问:燕尾定理
- 答:燕尾定理:在三角形ABC中,AD,BE,CF相交于同一点O,有
S△AOB∶S△AOC=BD∶CD
S△AOB∶S△COB=AE∶CE
S△BOC∶S△AOC=BF∶AF

因此图类似燕尾而得名。是五大模型之一,是一个关于平面三角形的定理,俗称燕尾定理。
此定理是面积法最重要的定理之一。
所谓面积法,就是利用面积相等或者成比例,来证明其他的线段相等或为成比例线段的方法。
相关定理有以下几个:
等底等高的两个三角形面积相等;
等底(或等高)的两三角形面积之比等于其高(或底)之比;
在两个三角形中,若两边对应相等,其夹角互补,则这两个三角形面积相等;
若在同一线段的同侧有底边相等面积相等的两个三角形,则连结两个三角形的顶点的直线与底边平行。 - 答:燕尾定理,因此图类似燕尾而得名,是五大模型之一,是一个关于三角形的定理(如图△ABC,D、E、F为BC、CA、AB 上点,满足AD、BE、CF 交于同一点O)。
S△ABC中,S△AOB:S△AOC=S△BDO:S△CDO=BD:CD;
同理,S△AOC:S△BOC=S△AFO:S△BFO=AF:BF;
S△BOC:S△BOA=S△CEO:S△AEO=EC:AE。 - 答:燕尾定理:在三角形ABC中,AD,BE,CF相交于同一点O,有
S△AOB∶S△AOC=BD∶CD
S△AOB∶S△COB=AE∶CE
S△BOC∶S△AOC=BF∶AF
因此图类似燕尾而得名。是五大模型之一,是一个关于平面三角形的定理,俗称燕尾定理。
此定理是面积法最重要的定理之一。
所谓面积法,就是利用面积相等或者成比例,来证明其他的线段相等或为成比例线段的方法。
相关定理有以下几个:
等底等高的两个三角形面积相等;
等底(或等高)的两三角形面积之比等于其高(或底)之比;
在两个三角形中,若两边对应相等,其夹角互补,则这两个三角形面积相等;
若在同一线段的同侧有底边相等面积相等的两个三角形,则连结两个三角形的顶点的直线与底边平行。 - 答:燕尾定理:在三角形ABC中,AD,BE,CF相交于同一点O,有
S△AOB∶S△AOC=BD∶CD
S△AOB∶S△COB=AE∶CE
S△BOC∶S△AOC=BF∶AF
因此图类似燕尾而得名。是五大模型之一,是一个关于平面三角形的定理,俗称燕尾定理。 - 答:燕尾定理:在三角形ABC中,AD,BE,CF相交于同一点O,有
S△AOB∶S△AOC=BD∶CD
S△AOB∶S△COB=AE∶CE
S△BOC∶S△AOC=BF∶AF
因此图类似燕尾而得名。是五大模型之一,是一个关于平面三角形的定理,俗称燕尾定理。
此定理是面积法最重要的定理之一。
所谓面积法,就是利用面积相等或者成比例,来证明其他的线段相等或为成比例线段的方法。
相关定理有以下几个:
等底等高的两个三角形面积相等;
等底(或等高)的两三角形面积之比等于其高(或底)之比;
在两个三角形中,若两边对应相等,其夹角互补,则这两个三角形面积相等;
若在同一线段的同侧有底边相等面积相等的两个三角形,则连结两个三角形的顶点的直线与底边平行。 - 答:燕尾定理,因此图类似燕尾而得名,是五大模型之一,是一个关于三角形的定理(如图△ABC,D、E、F为BC、CA、AB 上点,满足AD、BE、CF 交于同一点O)。
S△ABC中,S△AOB:S△AOC=S△BDO:S△CDO=BD:CD;
同理,S△AOC:S△BOC=S△AFO:S△BFO=AF:BF;
S△BOC:S△BOA=S△CEO:S△AEO=EC:AE。 - 答:燕尾模型十五打模型之一
问:求三角形燕尾定理和证明方法
- 答:燕尾定理 燕尾定理,因此图类似燕尾而得名,是一个关于三角形的定理(如图△ABC,D E F为AB AC BC 上的点,AF BE CD 交于O点)。 S△ABC中,S△AOB/S△AOC=S△BFO/S△OFC=BF/FC; 同理,S△AOC/S△COB=S△ADO/S△DOB=AD/DB; S△BOC/S△BOA=S△CEO/S△AEO=EC/AE。 证明过程如下: S△ABF/S△ACF=BF/FC=S△BOF/S△COF,根据比例性质,BF/FC=(S△ABF-S△BOF)/(S△ACF-S△COF)。
问:燕尾定理推理
- 答:燕尾定理:在三角形ABC中,AD,BE,CF相交于同一点O,有
S△AOB∶S△AOC=BD∶CD
S△AOB∶S△COB=AE∶CE
S△BOC∶S△AOC=BF∶AF
因此图类似燕尾而得名。是五大模型之一,是一个关于平面三角形的定理,俗称燕尾定理。 - 答:燕尾定理:在三角形ABC中,AD,BE,CF相交于同一点O,有
S△AOB∶S△AOC=BD∶CD
S△AOB∶S△COB=AE∶CE
S△BOC∶S△AOC=BF∶AF
因此图类似燕尾而得名。是五大模型之一,是一个关于平面三角形的定理,俗称燕尾定理。
问:数学三角形燕尾定理是什么
- 答:燕尾定理:在三角形ABC中,AD,BE,CF相交于同一点O,有三角形AOB的面积比三角形AOC的面积等于BD比CD;三角形AOB的面积比三角形COB的面积等于AE比CE;三角形BOC的面积比三角形AOC的面积等于BF比AF;因此图类似燕尾而得名。是五大模型之一,是一个关于平面三角形的定理,俗称燕尾定理。
问:燕尾定理是什么?
- 答:燕尾定理:在三角形ABC中,AD,BE,CF相交于同一点O,有
S△AOB∶S△AOC=BD∶CD
S△AOB∶S△COB=AE∶CE
S△BOC∶S△AOC=BF∶AF
因此图类似燕尾而得名。是五大模型之一,是一个关于平面三角形的定理,俗称燕尾定理。
此定理是面积法最重要的定理之一。
所谓面积法,就是利用面积相等或者成比例,来证明其他的线段相等或为成比例线段的方法。
相关定理有以下几个:
等底等高的两个三角形面积相等;
等底(或等高)的两三角形面积之比等于其高(或底)之比;
在两个三角形中,若两边对应相等,其夹角互补,则这两个三角形面积相等;
若在同一线段的同侧有底边相等面积相等的两个三角形,则连结两个三角形的顶点的直线与底边平行。 - 答:燕尾定理:在三角形ABC中,AD,BE,CF相交于同一点O