一、提高高炉煤比的措施与效果(论文文献综述)
张晓辉,李海峰,徐万仁,邹宗树[1](2022)在《富氢高炉风口理论燃烧温度的数学模型开发》文中认为以传统的理论燃烧温度模型为基础,建立了高炉富氢燃料喷吹的新理论燃烧温度模型.基于某厂1号高炉的实际生产数据,验证了模型的准确性和可靠性.研究结果表明,富氢高炉理论燃烧温度新模型预测结果与高炉实测数据吻合良好.新模型以合理的理论燃烧温度范围为基准,分别获得了富氧率(fO)、煤比(MPCI)、天然气喷吹量(VNG)等参数与理论燃烧温度(tf)间的关系,同时还分析了3个操作参数间的合理匹配问题.新模型获得的参数匹配规律可以为不同企业的高炉在复合喷吹煤粉与天然气时实现稳定运行提供一定的参考依据.
刘涛,刘林刚,林建超[2](2021)在《阳春新钢铁1250m3高炉提高煤比生产实践》文中研究指明阳春新钢铁2座1 250 m3高炉通过优化焦炭使用结构和炉料结构,强化筛分,减少入炉粉末,提高风温,合理调整喷煤制度,强化工艺操作,加强炉外管理等措施,2019年平均煤比达到145 kg/t,月平均最高159 kg/t,达到行业较高水平。
王辉[3](2021)在《1780 m3高炉提煤比强化冶炼实践》文中研究表明介绍了河钢唐钢中厚板公司1 780 m3高炉提煤比低成本强化冶炼的过程。通过对制粉-输粉设备流程改造,实现了喷吹煤供应量和喷吹结构稳定的预期目标。在此基础上,通过应用碳除尘灰混磨制粉技术、调整入炉物料结构和优化高炉操作等一系列措施,实现低成本配矿(品位56.6%±0.3%)条件下,煤比提升至150 kg/t·Fe的目标。
张均宾,刘春伟,宫学峰[4](2021)在《高炉高比例兰炭喷吹条件下提高煤比实践》文中研究指明山钢股份莱芜分公司4#高炉2020年在烧结矿质量提升,原燃料条件好转情况下,通过对喷吹系统进行改造,优化高炉操作参数,加强炉前渣铁排放等措施,提煤比,降焦比,在兰炭高比例喷吹情况下,将高炉煤比稳步提升至195~200 kg/t。
王小艾,姜鑫,田晓文,李洋,陈俊[5](2021)在《提高高炉喷煤比的关键技术研究与应用》文中进行了进一步梳理为解决2 500 m3高炉稳定性差、煤比低、焦比高的技术难题,早日实现提煤降焦,河钢宣钢与河钢钢研和东北大学合作,针对高炉冶炼过程中原燃料中碱金属及其行为、喷吹煤粉和焦炭性能以及矿焦混装方式等因素对高炉透气性的影响开展了全面研究。开发了高炉碱负荷-煤粉-焦炭的交互作用理论体系,并在2 500 m3高炉上进行了规模化应用。结果显示:高炉煤比提高40 kg/t HM,焦比降低33 kg/t HM,经济技术指标显着提高。
寇璐垚[6](2021)在《烟煤和兰炭混合燃烧特性及强化研究》文中指出为了降低燃料消耗,优化高炉效能,目前我国钢铁企业都采用高炉喷煤工艺进行炼铁,该工艺不仅可以降低高炉炼铁成本,还可以减轻在炼铁过程中对环境造成的污染。烟煤和无烟煤作为最主要的煤粉被应用于高炉喷煤中,随着无烟煤资源的匮乏,其价格不断在上升,因此亟需寻求一种的新的燃料来替代无烟煤。兰炭作为一种新型的炭素燃烧材料,由低阶煤块烧制而成,具有固定碳高、化学活性高和价格低等优点,燃烧后对环境所造成的污染很小,而且其燃烧性能与无烟煤很相似,在高炉喷吹中存在着巨大的市场发展潜力。然而,兰炭存在挥发性组分低、着火点高和燃尽比低等缺点,不能够作为单一喷吹燃料用于高炉中。针对以上的分析,本论文采用兰炭代替无烟煤,将烟煤与兰炭的混合煤粉作为喷吹煤粉进行燃烧实验,但是研究发现,随着兰炭配比量的增加,会导致混合煤粉的燃烧性能降低,影响高炉顺行,本研究通过向混合煤粉中加入一定量的助燃添加剂,在不降低混合煤粉的燃烧性能的前提下,尽可能的提高兰炭在混合煤粉中的使用量,达到有效的利用兰炭,降低高炉生铁成本的目的。本文首先采用热分析方法深入地研究了烟煤、无烟煤和兰炭三种煤粉单独燃烧时的燃烧特性,结果表明:烟煤的着火温度和燃尽温度最低,分别为517.72℃和695.03℃,最大燃烧速率最低,为9.90%/min,得到的综合燃烧特性指数也最低,为4.25×10-7,其燃烧性能最差;无烟煤的着火温度和燃尽温度分别为540.04℃和718.35℃,最大燃烧速率为10.64%/min,得到的综合燃烧特性指数最高,为4.65×10-7,其燃烧性能最好;兰炭的着火温度和燃尽温度最高,分别为564.36℃和736.91℃,但其最大燃烧速率最大,为11.62%/min,得到的综合燃烧特性指数为4.47×10-7,其燃烧性能略差于无烟煤。其次对烟煤与兰炭不同质量比的混合煤粉进行了热分析实验,以提供三种煤粉的冶炼厂目前所采用的混合喷吹煤粉(无烟煤:兰炭=1:1)的燃烧性能作为参照条件,得到以下结果:当兰炭与烟煤进行混合燃烧时,兰炭配比量为20%的混合煤粉燃烧性能最好,此时混合煤粉的着火温度和燃尽温度最低,分别为521.73℃和696.53℃,最大燃烧速率最大,为11.06%/min,得到的综合燃烧特性指数最高,为4.63×10-7;在不降低混合煤粉的燃烧性能的前提下,得到了兰炭最大配比量在25%,此时混合煤粉的着火温度、燃尽温度、最大燃烧速率温度和综合燃烧特性指数等燃烧特征参数都与混合煤粉(无烟煤:兰炭=1:1)的燃烧特征参数一致。研究了Fe2O3、La2O3两种添加剂分别对兰炭和烟煤的强化燃烧行为,主要结论如下:兰炭和烟煤的Fe2O3最佳添加量为2 wt%,而La2O3最佳添加量为1 wt%。当兰炭中加入2 wt%Fe2O3后,其着火温度最低,为552.33℃,燃尽温度最高,为739.67℃,最大燃烧速率最大,为11.88%/min,得到的综合燃烧特性指数最大,为4.83×10-7,其燃烧性能最好;当兰炭中加入1 wt%La2O3后,其着火温度和燃尽温度最低,分别为550.36℃和734.15℃,最大燃烧速率最大,为11.19%/min,得到的综合燃烧特性指数最大,为4.95×10-7,其燃烧性能最好。当烟煤中加入2 wt%Fe2O3后,着火温度为519.97℃,燃尽温度最高,为735.91℃,最大燃烧速率最大,为11.44%/min,得到的综合燃烧特性指数最大,为5.66×10-7,其燃烧性能最好;当烟煤中加入1 wt%的La2O3后,其着火温度518.47℃,燃尽温度最低,为650.89℃,最大燃烧速率最大,为13.16%/min,得到的综合燃烧特性指数最大,为7.48×10-7,其燃烧性能最好。综合可以得到La2O3比Fe2O3对兰炭和烟煤的助燃效果要更优异。在此基础上,考察了Fe2O3、La2O3两种添加剂最佳添加量分别对烟煤与兰炭混合煤粉的强化燃烧行为,结果表明:在不降低混合煤粉燃烧性能的前提下,向兰炭与烟煤的混合煤粉中加入2 wt%的Fe2O3后,可以使兰炭的最适配比量提高到35%,加入1 wt%的La2O3后,可以使混合煤粉中兰炭的最适配比量提高到40%之间,此时混合煤粉的燃烧特征参数都与参照煤粉(无烟煤:兰炭=1:1)的燃烧特征参数一致,满足高炉喷吹的指标要求。
杨逸如[7](2021)在《煤气化-闪速炼铁耦合工艺的数值模拟及优化》文中认为传统长流程炼铁工艺包含烧结、焦化、高炉炼铁等工序,会造成严重的环境问题,同时稀缺的冶金焦资源又会造成成本上涨、能量消耗等问题。经过多年发展,传统高炉炼铁技术在降低燃料消耗、提高能量利用方面有所进步,但是以焦炭为骨架的根本性结构并未发生改变。因此,无法从源头上消除炼铁环节中的高污染高能耗工序。近年来,闪速炼铁作为新兴的非高炉炼铁工艺而受到关注,该工艺利用高温还原性气体在气流床中直接还原小粒径矿粉颗粒,从而可以在极短时间内获得高质量的海绵铁。本文在闪速炼铁技术的实验室开发基础上,提出中试规模的工业化应用方案,即煤气化-闪速炼铁耦合流程。该方案利用成熟的煤气化工艺制备还原气,并在同一反应器中实现工艺耦合以减少反复转化,提高能量、物料的综合利用效率。本文对该流程中可能出现的关键问题进行讨论,并利用热平衡模型、CFD数值模型等对耦合工艺进行广泛的工艺探索。主要研究内容及相关结论如下:(1)首先开展闪速炼铁还原实验,利用高温还原气逆流接触小粒径矿粉,在颗粒下落过程中实现快速还原。结果表明,45-100μm粒径的赤铁矿颗粒在CO气氛下峰值温度1550℃的管式炉内飘落到底部,即可获得还原度60%左右的还原铁,而在H2气氛下峰值温度1450℃时就可获得还原度90%以上的还原颗粒。针对样品进行SEM微观形貌分析发现,实验温度较低时,颗粒呈现疏松多孔的状态,而当颗粒接近熔化温度时,渣、铁相出现明显分离,这是由于两相受表面张力影响而互相排斥。在CO气氛中,矿石颗粒的还原度相对较低,颗粒所含有的FeO量较大,因此致密铁核被渣相包裹。而在H2气氛下,颗粒还原度较高,所以流动性差,直到1550℃高温下才出现致密铁相,而渣相被排斥到还原铁表面。同步建立实验室条件下的小粒径高温还原动力学CFD数值模型,将文献中所获得的动力学参数用于预测矿石还原度,并和实验获得的数据进行对照,取得了良好的验证结果。(2)利用热平衡模型对中试规模下的闪速还原+粉煤气化耦合过程开展基础研究,并通过研究不同物料参数下的工况寻找优化条件。结果表明,随着氧煤比的降低和矿煤比的上升,平衡温度持续下降。在特定工况下,平衡温度会低于还原铁的最大产出温度,由此说明这些工况下的耦合过程是热量不足的,应当尽可能避免。随着矿煤比的升高,铁矿石还原度(R)主要呈现下降趋势,煤气利用率则有所上升。进一步通过气液两相平衡的方式构建熔池部分的热平衡模型,用于预测熔池部分的理想产物,根据指定的技术指标:液相温度(>1450℃)、金属收得率(>95%)和残碳量(<90kg/h),可以最终划定可行的操作范围,将区间内的最低煤耗工况(mcoal=0.80 kg,moxygen/mcoal=0.85)定为最优化工况。(3)进一步建立中试规模的闪速炼铁-矿石还原数值模型,模拟结果显示,突扩管结构会形成稳定的湍流结构,主要包括射流区(Ⅰ)、回流区(Ⅱ)、平推流区(Ⅲ)三个区域。对颗粒路径的分析结果表明,流场结构中的回流区域对于颗粒的停留时间有显着影响。在基础工况中,煤气化-闪速炼铁耦合模型所预测的一次还原度高达95%,理论上证实了在单一反应器中同时实现闪速炼铁和煤气化生产的可行性。随着矿煤比的增加,高温区形状逐渐从“∧”型分布转变为“∨”型,靠近喷嘴位置出现低温中心。根据不同工况下的产物质量对比,最终给出了两种可行方案。第一种是低矿煤比(<0.4)下可以同时获得高质量海绵铁(R>99%)和高质量合成气(η>90%),将海绵铁作为煤气化工艺的副产品;第二种是在较高矿煤比(=1.6)下获得合格的还原铁(R=75.57%)和较高热值的合成气(η=71.52%)。(4)在热平衡模型的基础上引入(?)分析方法,用于考察关键耦合工序和全流程工艺中的(?)值转移过程。利用分步式热平衡展开的煤气化-闪速炼铁耦合过程(?)流图显示,煤气的(?)经过闪速还原过程转移到还原铁而被有效储存。由于这一转移过程产生的损失,导致最终耦合工序的(?)效率为76.0%,略低于单纯煤气化的输出(?)效率77.5%。但是还原铁作为最终产物,其后续利用过程中的损耗较低,在考察全流程效率时,多联产系统的优势得以体现。最终得到的煤气化-闪速炼铁-循环发电的(?)效率(49.4%)领先于传统的煤气化-循环发电流程(44.0%),其中以物理、化学(?)形式储存在还原铁中的(?)值占整体(?)输出的17%。更加复杂的煤气化-闪速炼铁-甲醇合成-发电联产系统的(?)效率更是高达56.3%,由此证明了煤气化-闪速炼铁耦合流程可以利用还原铁储存(?)来提升系统效率,从而达到降低能耗的目的。
高向洲[8](2020)在《包钢1#高炉节能降耗途径的研究》文中进行了进一步梳理近年来随着我国经济实力的不断增长,各行各业开始蓬勃发展,由于生产规模的不断扩大我国的钢铁产量不断增长,钢铁产业与国内交通建设以及民用建设等息息相关,当前我国因钢铁产业所产生的能源消耗量已经占据国家总体能耗的14%左右,节能降耗当前已经成为了各钢铁企业急待解决的难题,在钢铁产业的各项能耗中,由于炼铁环节所产生的能耗量基本占据了钢铁产业总体能耗的40%左右,做好炼铁环节的节能工作,有利于降低钢铁产业的总体能耗,对完成钢铁工业的节能降耗目标具有重要意义。本次论文围绕1#高炉能耗较高的情况进行研究,其中对于入炉料的冶金性能以及1#高炉能量利用情况等进行评测分析,根据高炉冶炼过程中的实际数据以及各参数与节能降耗之间的关系绘制李斯特操作线,同时与1#高炉当前的实际情况相结合,制定了有效的节能降耗措施,主要研究内容包括:(1)通过实验测定1#高炉入炉料的冶金性能,通过对其数据进行分析找到合适的炉料结构优化方向及途径,为提高高炉入炉料的质量,进一步实现节能降耗目的提供有效依据。(2)对高炉进行相应物料平衡、热平衡测算,当前1#高炉的节能降耗状况良好,碳素的利用系数约为62.1%左右,有效热量的利用系数约为69.54%,炉身效率72.4%,燃料比降低潜力97.23kg/t,通过研究数据以及李斯特操作图分析高炉相关参数与燃料比之间的关系为:炉顶煤气中CO2的含量变化在±1%时,燃料比的变化量为±11.23kg/t;高炉冶炼出的生铁含硅量变化在±0.1%时,燃料比的变化量应为±5.60kg/t;高炉中金属化率变化处于±1%时,燃料比的变化量为±3.42kg/t;高炉风口温度变化值为±100℃时,此时燃料比的变化量为±18.31kg/t。(3)根据上述研究结果,明确当前高炉节能降耗的理想炉料结构为占比75%烧结矿和占比25%球团矿。
黎家恒,王亮,付华华,高柱平[9](2020)在《新钢9号高炉提高煤比生产实践》文中进行了进一步梳理新钢9号高炉自2012年开始,原燃料质量不断劣化,为适应原燃料质量,减少炉况波动,煤比维持在140kg/t~145kg/t,这个现状一直持续到2019年年底。但随着原燃料价格的上涨,生铁成本不断增加,2020年通过技术攻关,优化炉内操作,改善原燃料质量,强化生产组织管理,1~9月煤比较2019年升高9kg/t,焦比降低12kg/t,燃料比降低3kg/t。
张世鑫[10](2020)在《高炉喷吹煤粉燃烧特性研究以及对燃烧带煤气流分布的影响》文中提出高炉喷煤是钢铁企业实现降本增效可持续发展的重要手段,用来代替焦炭作为高炉内还原反应中热源和还原剂的部分作用,同时缓解练焦的所产生的压力。本文选取了某钢铁厂2500m3高炉喷吹用的三种煤粉作为实验样品,进行一系列的物理化学性质研究得出:烟煤的挥发分的含量高于其他两种煤,其氢氧含量也高于其他两种煤,烟煤和新疆原煤的硫含量相当,水洗精煤的硫含量最高。三种煤的高低位发热量按烟煤、水洗精煤和新疆原煤的顺序依次降低,烟煤开始变形温度最低,水洗精煤和新疆原煤的开始变形温度相当。三种煤的可磨性指数水洗精煤、烟煤和新疆原煤的可磨性依次降低;三种煤的焦渣特性指数相同,燃烧产物的粘结性相当。对不同配比的混煤进行热重和爆炸性实验,结果表明:随着烟煤比例的增加,增强了混煤的爆炸性,烟煤与水洗精煤的混煤火焰长度均小于100mm,且烟煤和新疆原煤的混煤呈强爆炸性,火焰长度均超过350mm,长于相对应的烟煤的水洗精煤的混煤火焰;当烟煤与新疆原煤混和时,挥发分含量在14~16时,燃烧性能较好;当烟煤与水洗精煤混合时,挥发分含量在12~17时,混煤燃烧性能最好。利用Factsage软件在高炉现行状态下进行相关计算,最佳熟料比为烧结矿:钛球:南非块矿:普球:澳矿采用比例分别为68.5%:1.1%:14.1%:15%:1.3%。此条件下能够保证炉渣较好的粘度和碱度,同时较好保证料柱的透气性,能够利于高炉的顺行。提升喷煤比的同时高炉顺行也会产生一定的恶化,配合调剂鼓风系统参数手段改善燃烧带煤气流分布十分必要,本文利用fluent软件研究发现鼓风温度和富氧率的变化对风口回旋区内的气相成分的变化趋势影响不大,但是鼓风温度和富氧率的变化均会促进煤粉燃烧反应的进行,是回旋区的高温区面积扩大且前移,保证一定的鼓风湿度,是高风温富氧喷煤条件下高炉顺行重要的调节手段。
二、提高高炉煤比的措施与效果(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、提高高炉煤比的措施与效果(论文提纲范文)
(1)富氢高炉风口理论燃烧温度的数学模型开发(论文提纲范文)
1 富氢高炉理论燃烧温度模型的建立 |
1.1 传统高炉理论燃烧温度模型 |
1.2 富氢高炉的理论燃烧温度模型 |
1.3 模型验证 |
2 高炉喷吹富氢气体对理论燃烧温度的影响 |
2.1 模型计算条件 |
2.2 高炉冶炼单因素参数的影响 |
2.3 高炉冶炼多因素参数综合分析 |
3 结论 |
(2)阳春新钢铁1250m3高炉提高煤比生产实践(论文提纲范文)
1 近几年高炉煤比 |
2 提高煤比措施 |
2.1 强化原燃料质量管理,优化外购焦炭、混匀料、高炉炉料结构 |
2.2 提高风温和富氧 |
2.3 优化喷煤制度 |
2.4 优化高炉工艺操作 |
2.5 强化炉外保障 |
3 结语 |
(3)1780 m3高炉提煤比强化冶炼实践(论文提纲范文)
0 引言 |
1 高炉喷吹煤结构优化 |
1.1 制粉-输粉设备流程改造及配煤结构优化 |
1.2 焦粉加工系统除尘灰回用技术 |
2 高炉提煤比强化冶炼措施 |
2.1 入炉矿石结构优化 |
2.2 提高煤比的技术措施 |
2.2.1 使用高风温,提高煤粉燃烧率 |
2.2.2 富氧鼓风,减少未燃煤粉入炉 |
2.2.3 提高顶压 |
2.2.4 高炉操作制度优化 |
2.2.5 风机叶片升级 |
3 实施效果 |
4 结语 |
(4)高炉高比例兰炭喷吹条件下提高煤比实践(论文提纲范文)
1 前言 |
2 喷吹兰炭条件下的可行性分析 |
2.1 兰炭喷吹的特点 |
2.2 提煤比的可行性条件分析 |
3 煤比提升后分析 |
3.1 技术指标 |
3.2 工艺操作 |
3.3 需要改善的问题 |
4 结语 |
(5)提高高炉喷煤比的关键技术研究与应用(论文提纲范文)
0 引言 |
1 关键技术研究 |
1.1 碱金属来源及其影响 |
1.1.1 碱金属来源及负荷 |
1.1.2 焦炭热性能及与碱金属交互行为 |
1.1.3 浸碱后焦炭热性能及与碱金属交互行为 |
1.2 矿焦混装对料柱透气性影响及其加入方式 |
1.2.1 熔滴性能分析 |
1.2.2 混装焦丁加入量的控制 |
1.2.3 混装焦丁加入粒度的控制 |
1.3 碱负荷-焦比-煤比关系 |
2 技术措施 |
2.1 控制碱金属富集 |
2.2 焦炭高效利用 |
2.3 基于碱负荷-焦比-煤比关系的提煤降焦操作 |
2.4 高炉操作 |
3 实施效果 |
4 结论 |
(6)烟煤和兰炭混合燃烧特性及强化研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 高炉喷煤 |
1.1.1 高炉喷煤技术的发展 |
1.1.2 高炉喷吹用煤概况 |
1.1.3 高炉喷吹用煤评价指标 |
1.1.4 影响高炉中煤粉喷吹量的因素 |
1.1.5 提高高炉中煤粉喷吹量的措施 |
1.2 助燃剂对煤粉的催化燃烧研究进展 |
1.3 课题研究的背景意义及主要内容 |
第二章 实验原料、设备及研究方法 |
2.1 实验原料 |
2.2 实验设备 |
2.3 实验研究方法 |
第三章 兰炭与烟煤混合燃烧特性的热重实验研究 |
3.1 兰炭、烟煤和无烟煤单独燃烧特性实验研究 |
3.2 兰炭与烟煤混合燃烧特性实验研究 |
3.2.1 兰炭添加量对混合煤粉燃烧特性的影响 |
3.2.2 升温速率对混合煤粉燃烧特性的影响 |
3.3 本章小结 |
第四章 Fe_2O_3对煤粉强化燃烧特性的影响研究 |
4.1 Fe_2O_3对兰炭强化燃烧特性的影响研究 |
4.2 Fe_2O_3对烟煤强化燃烧特性的影响研究 |
4.3 Fe_2O_3对兰炭与烟煤的混合煤粉强化燃烧特性的影响研究 |
4.4 本章小结 |
第五章 La_2O_3对煤粉强化燃烧特性的影响研究 |
5.1 La_2O_3对兰炭强化燃烧特性的影响研究 |
5.2 La_2O_3对烟煤强化燃烧特性的影响研究 |
5.3 La_2O_3对兰炭与烟煤的混合煤粉强化燃烧特性的影响研究 |
5.4 本章小结 |
第六章 结论 |
致谢 |
参考文献 |
附录 |
(7)煤气化-闪速炼铁耦合工艺的数值模拟及优化(论文提纲范文)
致谢 |
摘要 |
Abstract |
1 引言 |
2 文献综述 |
2.1 炼铁工艺的技术发展和趋势 |
2.1.1 高炉炼铁技术发展 |
2.1.2 非高炉技术发展 |
2.2 闪速炼铁技术发展与研究 |
2.2.1 气基直接还原机理 |
2.2.2 闪速炼铁的提出与国内外研究现状 |
2.2.3 闪速炼铁与煤气化耦合 |
2.3 炼铁过程的数值模拟发展 |
2.4 研究思路及主要研究内容 |
2.4.1 研究思路 |
2.4.2 主要研究内容及意义 |
3 实验室条件下的闪速炼铁研究基础 |
3.1 铁矿石气基直接还原过程热力学分析 |
3.2 铁矿石闪速还原实验 |
3.2.1 实验研究方法 |
3.2.2 实验原料及设备 |
3.2.3 实验步骤及方案设计 |
3.2.4 结果讨论 |
3.3 实验室下落管数值模型 |
3.3.1 气粒两相流的模型框架 |
3.3.2 闪速还原动力学 |
3.3.3 模型结果讨论 |
3.4 本章小结 |
4 煤气化-闪速炼铁耦合工艺的热平衡模型 |
4.1 还原塔气化还原过程的热平衡模型 |
4.1.1 热力学平衡模型构建 |
4.1.2 模拟工况方案 |
4.1.3 结果讨论 |
4.2 熔池粉煤补吹过程的热力学建模 |
4.2.1 热力学平衡模型构建 |
4.2.2 模拟工况方案 |
4.2.3 结果讨论和优化工况 |
4.3 本章小结 |
5 煤气化-闪速炼铁数值模型的构建与验证 |
5.1 计算流体力学框架 |
5.1.1 欧拉-拉格朗日框架下的多相流模拟 |
5.1.2 流体流动的基本控制方程 |
5.1.3 颗粒追踪的基本控制方程 |
5.1.4 计算域及模型边界条件 |
5.1.5 均相/异相化学反应 |
5.2 粉煤气化过程的数值模拟 |
5.2.1 脱挥发分过程 |
5.2.2 粉煤气化反应 |
5.2.3 气相组分间的化学反应 |
5.2.4 煤气化过程的结果讨论 |
5.3 煤气化-闪速炼铁耦合过程的结果讨论 |
5.3.1 炉内分布特征 |
5.3.2 颗粒行为分析 |
5.3.3 产物预测与关键问题论证 |
5.4 本章小结 |
6 基于煤气化-闪速炼铁数值模型的物料参数优化 |
6.1 不同煤种的影响 |
6.2 不同氧/煤比对煤气化过程的作用 |
6.2.1 煤气温度和组分 |
6.2.2 炉内分布特征 |
6.2.3 颗粒特性 |
6.3 矿/煤比对耦合过程的作用 |
6.3.1 流场分布 |
6.3.2 温度和组分分布 |
6.3.3 颗粒停留时间 |
6.3.4 对产品质量的影响 |
6.4 本章小结 |
7 基于数值模拟的反应器结构设计和优化 |
7.1 双通道喷嘴下的炉型结构优化 |
7.1.1 矿粉投料位置的作用 |
7.1.2 炉身半径的影响 |
7.1.3 炉身长径比的影响 |
7.1.4 顶部曲面与优化炉型 |
7.2 旋流喷嘴反应器的基本特征和工况优化 |
7.2.1 旋流喷嘴下的煤气化特征 |
7.2.2 旋流角度对于工况的影响 |
7.3 本章小结 |
8 煤气化-闪速炼铁耦合工艺的全流程设计与模拟计算 |
8.1 煤气化-闪速炼铁-发电联产工艺 |
8.1.1 燃气轮机发电 |
8.1.2 蒸汽轮机发电 |
8.2 煤气化-闪速炼铁-甲醇合成-发电多联产工艺 |
8.2.1 CO变换工序 |
8.2.2 甲醇合成工序 |
8.2.3 精馏工序 |
8.2.4 热量回收与蒸汽发电 |
8.3 基于GSP气化炉的燃气发电工艺 |
8.4 基于(?)分析概念的能量计算 |
8.4.1 热力学第二定律和(?)分析 |
8.4.2 耦合过程的效率计算 |
8.4.3 全流程工艺的(?)流计算 |
8.5 本章小结 |
9 结论与展望 |
9.1 主要结论 |
9.2 论文创新点 |
9.3 展望 |
参考文献 |
作者简历及在学研究成果 |
学位论文数据集 |
(8)包钢1#高炉节能降耗途径的研究(论文提纲范文)
摘要 |
Abstract |
引言 |
1 文献综述 |
1.1 研究背景及意义 |
1.2 国内外高炉炼铁发展趋势 |
1.2.1 国外高炉炼铁发展趋势 |
1.2.2 国内高炉炼铁发展趋势 |
1.3 高炉炼铁节能降耗技术研究 |
1.3.1 常用节能技术 |
1.3.2 新型节能技术 |
1.4 研究内容 |
2 高炉入炉原、燃料及综合炉料冶金性能分析 |
2.1 高炉入炉原、燃料现状 |
2.2 炉料冶金性能的测定 |
2.2.1 炉料的冶金性能对高炉能耗及生产的影响 |
2.2.2 冶金性能测定方法 |
2.2.3 实验内容及方法 |
2.2.4 单一入炉矿料的性能结果测试分析 |
2.2.5 综合炉料中温还原性、低温还原粉化、熔融滴落测试结果 |
3 高炉能量利用情况评价以及节能分析 |
3.1 能量利用情况的评价意义 |
3.2 原始数据的测定整理 |
3.3 物料平衡计算 |
3.3.1 物料平衡计算依据 |
3.3.2 高炉物料平衡的计算 |
3.4 热平衡计算 |
3.4.1 热平衡计算的规定 |
3.4.2 热平衡求算依据 |
3.5 能量利用指标 |
3.5.1 计算依据 |
3.5.2 1#高炉能量利用指标 |
3.6 碳比图 |
3.6.1 理论依据 |
3.6.2 确定碳比图直线 |
3.6.3 高炉碳比图 |
3.6.4 焦比降低的计算分析 |
3.7 操作线图的绘制及分析 |
3.7.1 李斯特操作线中各点的含义及计算方式 |
3.7.2 确定操作线图所需要的数据 |
3.7.3 李斯特操作线图 |
3.7.4 高炉操作参数与高炉能耗之间关系 |
3.8 高炉热平衡测试结果比较分析 |
3.9 本章小结 |
4 高炉节能降耗措施分析 |
4.1 提高入炉矿量质量水平 |
4.1.1 提高入炉品位 |
4.1.2 提高入炉料的整体质量 |
4.1.3 对入炉原料及燃料的粒度组成进行优化 |
4.1.4 炉料结构的优化 |
4.2 提高喷煤比 |
4.2.1 风温提高 |
4.2.2 提高富氧率 |
4.3 探求合理操作参数 |
4.3.1 优化调剂,提升利用率 |
4.3.2 进行低硅冶炼 |
结论 |
参考文献 |
在学研究成果 |
致谢 |
(9)新钢9号高炉提高煤比生产实践(论文提纲范文)
1 概述 |
2 制约煤比提高的因素 |
2.1 炉缸工作不活跃 |
2.2 原燃料质量差且波动大 |
3 提煤比降焦比措施 |
3.1 优化炉内操作 |
(1)布料矩阵的调整。 |
(2)扩大矿批。 |
(3)送风参数的调整。 |
(4)渣系的调整。 |
3.2 改善原燃料质量 |
3.3 加强设备检查,优化炉外生产组织 |
3.4 改善煤粉质量,提高煤粉燃烧性能 |
4 效果 |
5 结语 |
(10)高炉喷吹煤粉燃烧特性研究以及对燃烧带煤气流分布的影响(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 高炉喷煤的意义 |
1.2 高炉喷煤技术的发展现状 |
1.3 高炉喷煤对冶炼的影响 |
1.3.1 高炉喷煤对理论燃烧温度的影响 |
1.3.2 对焦炭的影响 |
1.4 高炉喷煤的相关要求 |
1.5 课题提出的背景及主要内容 |
1.5.1 课题提出背景 |
1.5.2 研究内容 |
第二章 某高炉喷吹用煤粉的性质研究 |
2.1 喷吹用煤的工业分析和元素分析 |
2.2 喷吹用煤的高低位发热量和焦渣特性 |
2.3 喷吹用煤的可磨性系数和灰熔性 |
2.4 喷吹用煤的热解特性 |
2.5 本章小结 |
第三章 某高炉喷吹用混煤的燃烧特性研究 |
3.1 不同混煤方案的燃烧率 |
3.2 不同混煤方案的活化能 |
3.3 不同混煤方案的着火温度 |
3.4 不同混煤方案的最大失重速率及其对应温度 |
3.5 不同混煤方案的燃尽指数及其综合燃烧特性指数 |
3.6 不同混煤的爆炸性参数 |
3.7 本章小结 |
第四章 某高炉不同混煤条件下物料还原性及炉渣性质研究 |
4.1 高炉炉渣形成的过程 |
4.2 化学成分对炉渣冶金性能的影响 |
4.2.1 MgO对高炉炉渣冶金性能的影响 |
4.2.2 Al_2_O3对高炉炉渣冶金性能的影响 |
4.2.3 TiO_2对高炉炉渣冶金性能的影响 |
4.3 计算结果分析 |
4.3.1 不同配煤时炉渣的性质研究 |
4.3.2 不同铁矿石配比时炉渣的性质研究 |
4.4 本章小结 |
第五章 某高炉燃烧带煤气流分布的研究 |
5.1 煤气流的形成以及煤粉的燃烧特性 |
5.2 高炉燃烧带煤气流分布的模拟计算 |
5.3 喷煤条件下鼓风参数对燃烧带煤气流分布的影响 |
5.3.1 鼓风温度对燃烧带煤气流的影响 |
5.3.2 鼓风含氧量对燃烧带煤气流的影响 |
5.3.3 鼓风含水量对燃烧带煤气流的影响 |
5.4 本章小结 |
第六章 高炉喷煤生产实践研究 |
6.1 高炉合理喷吹煤粉结构试验方案 |
6.2 高炉合理喷吹煤粉试验研究 |
6.3 高炉喷煤优化 |
第七章 结论 |
致谢 |
参考文献 |
附录 |
四、提高高炉煤比的措施与效果(论文参考文献)
- [1]富氢高炉风口理论燃烧温度的数学模型开发[J]. 张晓辉,李海峰,徐万仁,邹宗树. 材料与冶金学报, 2022(01)
- [2]阳春新钢铁1250m3高炉提高煤比生产实践[J]. 刘涛,刘林刚,林建超. 南方金属, 2021(06)
- [3]1780 m3高炉提煤比强化冶炼实践[J]. 王辉. 河北冶金, 2021(11)
- [4]高炉高比例兰炭喷吹条件下提高煤比实践[J]. 张均宾,刘春伟,宫学峰. 山东冶金, 2021(05)
- [5]提高高炉喷煤比的关键技术研究与应用[J]. 王小艾,姜鑫,田晓文,李洋,陈俊. 河北冶金, 2021(05)
- [6]烟煤和兰炭混合燃烧特性及强化研究[D]. 寇璐垚. 昆明理工大学, 2021(01)
- [7]煤气化-闪速炼铁耦合工艺的数值模拟及优化[D]. 杨逸如. 北京科技大学, 2021(02)
- [8]包钢1#高炉节能降耗途径的研究[D]. 高向洲. 内蒙古科技大学, 2020(06)
- [9]新钢9号高炉提高煤比生产实践[J]. 黎家恒,王亮,付华华,高柱平. 中国金属通报, 2020(11)
- [10]高炉喷吹煤粉燃烧特性研究以及对燃烧带煤气流分布的影响[D]. 张世鑫. 贵州大学, 2020(01)