一、武钢4号高炉专家系统的应用(论文文献综述)
刘栋梁,陈令坤[1](2021)在《武钢有限7号高炉炉况诊断系统的开发和应用》文中研究表明开发了武钢有限7号高炉炉况诊断系统,包括炉顶料面雷达监测系统、炉身上部料层结构模型、高热负荷区域的铜冷却壁热面渣皮监测模型,以及武钢高炉专家系统中的过程参数计算、炉况状态的模式识别等内容,并建立了案例库和知识库。炉顶料面雷达监测系统和炉身上部料层结构模型能够直观反映高炉料面形状和上部炉料下降过程,为高炉调控布料提供了重要参考。铜冷却壁热面渣皮监测模型为高炉控制炉型、维护铜冷却壁正常运行提供了帮助。过程参数计算可以及时反映高炉炉温变化趋势。炉况状态的模式识别以及案例库和知识库可以帮助操作人员判断炉况状态,并提出具体的炉况调剂方式的建议。该系统应用后,高炉利用系数、煤气利用率、燃料比技术指标有了明显改善。
卢正东[2](2021)在《高炉炉衬与冷却壁损毁机理及长寿化研究》文中研究表明现代高炉的技术方针是“长寿、高效、低耗、优质和环保”,其中“长寿”是实现高炉一切技术目标的基础。针对目前我国高炉普遍存在的炉缸炉底炉衬和高热负荷区域冷却壁的损毁问题,本文以武钢高炉为研究对象,首先确定了高炉炉衬与冷却壁长寿技术研究方法,然后分别研究了炉衬与冷却壁的损毁机理。在此基础上,进一步开展了炉缸结构设计与炉衬选型研究,探讨高热负荷区域铜冷却壁渣皮与热流强度监测系统的开发与应用,并提出了武钢高炉长寿优化措施,全文主要结论如下:武钢4号、5号高炉大修破损调查表明:炉缸炉底侵蚀特征主要表现为炉缸环缝带侵蚀和炉缸炉底象脚状侵蚀。通过炭砖热应力计算和岩相分析,炉缸环缝产生原因在于炉缸径向热应力较大,当炭砖性能较差时会产生微裂纹,在炉内高压下有害元素以蒸汽形式迁移至裂纹处发生液化,并与CO发生反应,生成氧化物、碳酸盐和石墨,形成炉缸环缝侵蚀带。通过炉底死焦柱受力分析与计算,死铁层较浅,死焦柱沉坐炉底,加剧铁水对炭砖侧壁的环流冲刷是造成炉缸炉底象脚状侵蚀的主要原因。针对炉役中期炉底温度异常升高问题,武钢采用钛矿护炉,停炉取样显微分析表明:沉积物中Ti的存在形式主要为Ti C、Ti N、Ti单质,并呈现颗粒皱褶和堆叠形貌,当其附着在炉缸侧壁和炉底时可有效缓解侵蚀进程。武钢生产实践表明,当钒钛矿用量2%~3%时,生铁含钛可达0.10~0.20%,渣铁流动性尚可,炉衬侵蚀速度得到控制。通过武钢5号、1号、7号和6号高炉开展大中修破损调查,对高炉铸铁冷却壁和铜冷却壁开展了力学性能、理化指标和显微结构分析,研究结果表明:铸铁冷却壁主要表现为纵、横裂纹引起的壁体开裂,严重部位存在壁体烧损甚至脱落,其损毁原因主要在于热应力造成的壁体开裂,以及高炉气氛下铸铁基体的氧化与生长。铜冷却壁损毁机理在于:高炉渣皮脱落后,煤气流和炉料与铜冷却壁热面直接接触,使壁体温度升高力学性能下降产生热变形,应力应变长期积累使壁体热面形成微小裂纹,然后在渣铁和煤气的渗透作用下发生熔损和脱落。对于炉腹段铜冷却壁底部水管处的损毁,原因还在于结构设计存在缺陷,冷却壁底部容易受到高温煤气流、渣铁流的冲刷,从而造成壁体的损毁。为满足高炉长寿要求,针对炉缸砌筑结构和炉衬选型问题,通过建立传热模型,采用数值模拟软件计算了高炉全生命周期炉缸传热效果,结果表明:在烘炉阶段,采用停水方式可保证烘炉效果。在炉役初期和中期,不同炉缸结构温度场相近,仅当进入炉役后期,温度差别才逐渐扩大。综合传热计算、热阻分析和建造成本,采用铸铁冷却壁可以满足炉缸传热的需要。针对“铸铁冷却壁+大块炭砖”与“铸铁冷却壁+复合炭砖”两种炉缸结构,研究了炭砖在不同导热系数下的炉缸温度场分布情况。当炉役初期陶瓷杯存在,大块炭砖导热系数为25W/(m·K)时,前者炭砖热面温度为571℃,后者为537℃,可基本杜绝有害元素化学反应的发生;当炉衬热面降至1150℃时,前者耐材残余厚度为850mm,后者为1060mm,均可满足高炉长寿服役要求。针对“铸铁冷却壁+大块炭砖”结构炉缸,研究了冷却比表面积对炉缸温度场的影响。结果表明不同冷却比表面积冷却壁对应的炉衬热面温度差别始终很小,即单纯提高冷却比表面积对降低炉缸温度场作用甚微,故在实际设计时应结合冷却壁制造和冷却水运行成本综合考虑,采用适宜高炉安全经济生产需要的冷却比表面积和水管参数。另外,对炉缸立式和卧式冷却壁优缺点进行了对比分析,从炉缸全周期使用需求考虑,建议采用立式冷却壁。最后,提出了提出了延长高炉炉缸寿命的技术对策及炉缸安全状况的评价方法。针对单独采用热电偶温度或水温差计算热流强度的不足,武钢采取计算和记录冷却壁水温差、热流强度、跟踪热电偶测温数据以及炉役末期炉壳贴片测温相结合的方法综合判断炉缸状况,收效良好。针对高热负荷区域冷却壁的损毁问题,首先对武钢7号高炉铜冷却壁渣皮进行了化学成分、物相形貌、及物理性能研究:其主要物相为黄长石、尖晶石和碳,渣皮中Al2O3含量较高,易形成高熔点的镁铝尖晶石。渣皮流动性温度为1584.1℃,粘度为1000m Pa·s(1550℃),导热系数约为1.5W/(m·K)。然后确定了武钢高炉渣皮厚度、热流强度、炉气温度的计算方法,开发了铜冷却壁渣皮厚度与热流强度监控系统,该系统目前运行稳定,可掌握高炉渣皮波动规律,快速研判高炉渣皮厚度、热流强度及炉型变化趋势,及时调整高炉操作模式。针对炉腹铸铁冷却壁损毁问题,采用增大炉腹冷却壁下部厚度,利用壁体上窄下宽的外型缩小炉腹角,有效遏制了冷却壁的损毁现象;针对炉腹铜冷却壁底部损毁问题,将进水管处改为凸台包覆设计,以防止煤气流从炉腹炉缸衔接处窜入烧坏进水管,从而解决了炉腹段铜冷却壁的损毁问题。冷却壁长寿服役的核心在于保持冷却壁始终处于无过热状态,武钢在高炉生产中,采取控制有害元素入炉,稳定用料结构,保持合理的热制度和造渣制度,通过上下部调剂和强化冷却系统管理,确保冷却壁渣皮厚度合理,从而有效延长了冷却壁的使用寿命。
武月清,仪德刚[3](2021)在《苏联专家援建包头钢铁公司考略》文中进行了进一步梳理包头钢铁公司(简称包钢)是"一五"时期苏联重点援助钢铁项目之一,由苏联黑色冶金设计院完成初步设计方案,从选址到1号高炉出铁,都是在苏联专家指导下进行的。基于档案等文献资料对苏联专家从1953年参与包钢筹建到撤走的七年时间所做的具体工作进行了梳理,认为苏联专家援建包钢是包钢得以建立的重要因素,对于苏联钢铁技术向中国的转移起到了关键作用。苏联专家在包钢工作期间帮助包钢推广和采用了新技术,对加快包钢建设速度、节约原材料和国家资金、保证工程质量等均起到了积极的作用,也为包钢的后期发展打下了基础。
李昊堃[4](2020)在《太钢高碱度碱性球团矿制备及应用技术基础研究》文中提出碱性球团矿具有生产过程污染物排放量、固体燃料消耗量和返料量低于烧结矿,且其高温冶金性能优于酸性球团矿,高炉配用后有利于高炉实现低渣比、低燃料比及低污染物排放冶炼等多方面优点。国外企业生产碱性球团矿一般采用带式焙烧机工艺(使用气体燃料),但我国由于能源结构以煤为主,国内球团矿生产企业(特别是独立运行的球团矿生产企业)主要采用以煤为燃料的链篦机-回转窑工艺。因此,需要从冶金物理化学的基本原理出发,结合必要的实验室研究和工业化试验,针对链篦机-回转窑碱性球团矿生产及高炉碱性球团矿应用过程中涉及的环节开展系统的基础研究工作。本文结合太钢未来在自有铁矿资源利用及高炉炉料结构优化方面的发展规划,基于太钢自产铁矿粉的原料特性,围绕链篦机-回转窑法碱性球团生产和高炉碱性球团应用,通过理论分析、模型计算、实验模拟及工业试验,系统研究了碱性球团焙烧特性和还原膨胀微观机制、链篦机-回转窑法生产碱性球团的适宜热工制度、高比例碱性球团高炉炉料结构对高炉冶炼过程影响的热力学机理。为全面推广链篦机-回转窑法碱性球团生产,以及高炉碱性球团矿应用提供理论基础和技术支撑。基于分子理论建立的球团矿焙烧过程热力学模型,系统研究了碱度对球团矿焙烧过程中形成复杂分子及其含量的影响。并在实验室条件下,以太钢自产铁精矿作为原料,制备了不同碱度的球团矿,应用XRD、SEM、EDS、Image-Pro Plus等研究手段,检测了不同碱度球团矿中复杂分子及其含量,验证了热力学模型计算结果的准确性。基于分子理论建立的热力学模型,为研究球团矿的焙烧过程提供了一种新的可靠研究手段,可以方便的预测出原料成分及焙烧温度变化对于球团矿焙烧过程的影响。利用建立的球团矿焙烧热力学模型结合必要的实验研究,系统研究了碱度对于球团矿焙烧固结机理的影响。研究结果表明,对于酸性球团矿而言,其固结机理为赤铁矿晶体再结晶并形成连晶结构;对于碱性球团矿而言,其固结机理为铁酸钙、含钙硅酸盐等低熔点化合物取代Fe2O3微晶连接成为赤铁矿晶体间的粘结相,并且球团矿的碱度不同粘结相的种类不同。当球团矿碱度小于1.0时,粘结相以钙铁橄榄石为主;当球团矿碱度大于1.0时,粘结相中的复合型针状铁酸钙含量增加,铁酸钙取代钙铁橄榄石成为碱性球团的主要粘结相。在碱性球团矿固结机理研究的基础上,进一步研究了碱度对球团矿还原膨胀行为的影响。研究结果表明,碱度小于1.0的球团矿,其还原过程中产生膨胀裂纹的主要原因为,钙铁橄榄石包裹的Fe2O3颗粒与独立的Fe2O3颗粒在还原速度上存在差异,使得球团矿内部产生应力集中,导致晶体结构发生破裂;碱度大于1.0的球团矿,由于球团矿的主要固结相转变为还原速度快的铁酸钙,在还原过程中其熔点较低,形成液相收缩后形成孔洞,减小了球团内因体积膨胀产生的应力集中。因此,碱度大于1.0的碱性球团矿在高炉内还原过程的体积膨胀率显着降低。通过实验室造球、焙烧试验,链篦机-回转窑模拟(扩大)试验及现场工业试验,研究了利用太钢自产精矿粉制备碱性球团矿的适宜预热焙烧制度。研究结果表明,鼓风干燥段风温230℃;抽风干燥段风温420℃;预热Ⅱ段风温1160-1180℃;回转窑窑头温度1165-1175℃。在以上工艺条件下生产的碱性球团矿指标:TFe含量62.3%,CaO/SiO2≥1.0,抗压强度≥3500N/个球,还原膨胀率≤15%。可以满足太钢大型高炉对入炉原料使用要求。基于最小自由能原理建立的气-固相热力学计算模型,系统研究了碱性球团矿比例对高炉块状带间接还原过程的影响规律。结果表明,随碱性球团矿比例的增加,炉料在高炉上部块状带的还原度呈下降趋势。其主要原因为随球团矿比例的增加,高炉炉料结构中的铁氧化物组成发生了变化,导致高炉块状带气固相还原反应的反应条件及平衡组成均发生了变化,使得综合炉料还原度下降。基于离子-分子共存理论,建立的高炉渣铁脱硅反应硅元素分配比热力学模型。研究了渣系中各组元的成分变化及对硅分配系数的影响,并定量地计算出渣中各复杂分子及各组元对脱硅的贡献。研究结果表明,高炉渣系中对硅元素分配比影响较大的复杂分子有CaO·SiO2、2CaO·SiO2、CaO·MgO·2SiO2三种,简单分子有CaO、MgO两种。由于碱性球团矿中的CaO含量要远高于酸性球团矿,因此,当高炉配用碱性球团矿有利于脱硅反应的进行。
薄宏涛[5](2019)在《存量时代下工业遗存更新策略研究 ——以北京首钢园区为例》文中研究说明针对存量时代下工业遗存更新这一热点课题,本研究以国内外工业遗存更新相关理论为基础,结合工业遗存更新实践发展的沿革及现状,分析中外不同法制环境、城市能级、转型动能等背景下呈现的更新实践之异同及该领域的发展趋势。从跨学科的多维度研究视角,集成国内外工业遗存更新领域主要策略并建构我国工业遗存更新实践的实施路线。通过横向更新策略集成与纵向技术实施路线梳理,清晰建构出中国工业遗存更新实践所需要的“道”与“术”的全景认知。研究分析当今工业遗存更新策略的成因机制和解决要素,总结并集成出在工业遗存更新实践中八个维度的主要策略。顺承策略研究,以首钢工业园区更新工程实践为主要实证,阐述其更新选择的策略要点、解决的困难问题、及实施的全景流程,验证策略的落地性。对照国内遗存更新实践环节常见的问题,研究梳理了从宏观政策环境到中观评估设计再到微观实施运管的全流程线索,以前后关联、层层递进的关系阐述了工业遗存更新实施进程涉及的八个阶段的纵向技术流程,为更新实践能动者提供过程引导。结合我国工业遗存更新实践领域现状,对制度环境平台搭建、更新策略选择、产业及实施策略选择三方面主要问题提出了针对性解答思路,以期提供尽可能完善清晰、整体有效的实践指引。为寻求更加理性和恰当的更新方法建言献策。
王同生[6](2019)在《高炉用电煅煤基炭砖中高导热网络的构筑及其性能研究》文中认为炭砖是炼铁高炉炉缸炉底部位的重要耐火材料,其寿命决定着高炉的一代炉役。随着高炉强化冶炼技术的发展,高炉炉缸炉底部位工作环境日益严苛,要求高炉炭砖具有较高的导热系数。对于提高炭砖的导热系数,人们往往是通过引入高导热物质,如采用人造石墨取代传统电煅煤;也有报道在炭砖制备过程中添加硅粉,并复合引入铝粉或硅微粉等,利用高温下原位形成大量的AlN、Al3C4和SiC等高导热陶瓷相填充气孔来提高炭砖的导热系数。然而,目前高炉炭砖仍以电煅煤基炭砖为主,大量引入人造石墨必然会造成炭砖成本大幅度上升。因此,如何进一步提高电煅煤基炭砖的导热系数是目前亟待解决的问题。本论文首先通过热活化处理电煅煤,提高其石墨化度和反应活性,促进电煅煤参与反应生成大量碳化硅晶须,提高炭砖导热系数;其次,通过在电煅煤骨料表面和树脂结合剂中负载催化剂,高温下催化裂解树脂碳生成碳纳米管,优化骨料与基质间的界面结合,降低界面间的传热热阻,从而改善炭砖的导热系数;再次,在炭砖制备过程中引入活性石墨碳源,促进基质中原位形成大量碳化硅晶须,构筑基质高导热网络提高炭砖的导热系数;另外,采用真空浸渍氧化铝浆体技术对电煅煤骨料进行处理,利用氧化铝陶瓷相填充气孔使骨料的致密度提高,或通过降低电煅煤骨料的临界粒度,减少骨料内大气孔和孔隙的同时,增加基质相包覆炭骨料面积,构筑基质高导热网络,提高炭砖的导热系数;最后,采用支持向量机对炭砖的制备工艺参数和导热系数进行回归建模,探明各因素对炭砖导热系数的贡献大小,为制备高导热炭砖提供理论指导。通过上述的研究工作,可以得出以下结论:1.采用热氧化和微波活化技术处理电煅煤,显着提高了其石墨相含量和反应活性,促进了高温下其与含硅气相物质反应形成SiC晶须。在炭砖制备过程中引入上述活化电煅煤原料,促进了其与含硅气相物质反应形成碳化硅晶须,优化了电煅煤骨料与基质间的界面结构,大大提高了材料的导热系数。2.采用含镍化合物催化炭砖结合剂技术,可以催化树脂裂解碳形成碳纳米管,在高温下碳纳米管与含硅气相发生反应形成碳化硅晶须。与采用化学气相沉积技术制备碳纳米管包覆电煅煤相比,在炭砖制备过程中直接将含镍催化剂负载于电煅煤表面或掺入树脂结合剂中,可以催化树脂裂解碳原位形成碳纳米管,部分纳米碳管与含硅气相发生反应蚀变形成碳化硅晶须,在炭砖中构筑了电煅煤骨料-碳纳米管/碳化硅晶须-基质良好的界面结构,提高了材料力学性能和导热性能。3.采用在炭砖制备过程中引入高活性碳源的方式,促进了炭砖基质中石墨-碳化硅晶须导热网络的形成。在炭砖制备过程中通过引入热氧化鳞片石墨、超细石墨和沥青,促进了基质中碳化硅晶须的大量生成,形成石墨-碳化硅晶须导热网络,显着提高了炭砖的导热系数,同时也改善了材料的力学性能。4.采用真空浸渍氧化铝浆体技术处理电煅煤骨料和降低其临界粒度的方式,提高了电煅煤骨料的致密度,优化了炭砖导热系数的同时,也提高了其抗铁水侵蚀性能。电煅煤原料是由无烟煤高温电煅烧而成,高温下有机物质挥发在电煅煤内部留下气孔和裂隙。对电煅煤进行真空浸渍氧化铝浆体处理,氧化铝填充进气孔和裂隙,提高了电煅煤的致密度;或降低临界颗粒尺寸,减少骨料中大气孔和裂隙,优化了材料导热系数的同时,大幅度提高了材料的强度和抗铁水侵蚀性能。5.采用支持向量机方法建立了炭砖导热系数的相关因素关系模型,揭示了相关因素对导热系数贡献大小,并对炭砖的导热系数进行了预测。基于支持向量机方法获取的炭砖导热系数与相关因素的回归拟合公式,发现热氧化鳞片石墨对炭砖导热系数提高的影响最大,而电煅煤骨料对导热系数提高的影响最小。基于上述公式,较准确地预报了采用人造石墨替换电煅煤和引入热氧化鳞片石墨制备的炭砖导热系数。
刘璐[7](2019)在《包钢4150m3高炉风口曲损的分析研究与治理》文中认为高炉炼铁是钢铁生产的重要环节,风口是保证高炉正常生产的关键设备,位于高炉炉缸上方,由于风口所处环境十分恶劣,导致风口极易破损。包钢两座4150m3高炉自开炉6个月后就开始出现风口曲损的问题,最严重的时候,38个风口仅有20个风口可以喷煤。风口曲损后严重影响高炉的稳定顺行,制约了高炉进一步强化冶炼。同时,休风更换风口带来的直接产量损失和间接经济损失都非常大。因此,找出导致风口曲损的原因,制定解决措施刻不容缓。本文从异常炉况、装料制度、气流分布、入炉碱负荷、炉前出铁等方面进行研究,剖析原因,通过优化装料制度、维护合理炉型、探索适宜的送风制度、控制有害元素负荷、优化风口参数、加强炉前出铁管理方面制定了合理的解决措施,逐步消除了风口曲损现象,延长了风口使用寿命,实现高炉稳定顺行。在风口曲损与炉况顺行关系的研究中,发现悬料、崩料等异常炉况容易使炉料直接进入炉缸,其重力作用到风口上导致风口曲损,因此保持炉况稳定顺行是高炉风口曲损大幅减少的基础。摸索到了重要参数的合理控制范围:中心气流指数Z值范围8-12、边缘气流指数W值范围0.8-1.2;理论燃烧温度Tf值在2150℃-2300℃;鼓风动能范围850011000kg·m·s-1;热负荷范围(9000-10500)×10MJ·h-1、理论燃烧温度范围(2150±100)℃。在风口曲损与装料制度关系的研究中,通过对炉料的批重,布料方式的探索,制订了合理的布料矩阵,采用了疏松边缘气流、稳定中心气流的制度,异常炉况大幅减少,操作炉型逐渐趋于合理。在风口曲损与炉渣碱度关系的研究中,分析了提高自产矿入炉比例后,对炉内整体透气透液性及风口曲损情况的影响,提出了优化配料结构,降低有害元素含量高的矿种的配比,适当降低炉渣碱度至1.08左右等措施,从而减轻入炉有害元素对炉况造成的影响。在风口曲损与出铁管理关系的研究中,认为确保铁口深度在合理范围内(3.7m4.2m),可以为良好的炉前作业创造条件。
何友国[8](2019)在《唐钢2000m3高炉铜冷却壁应用研究》文中进行了进一步梳理本课题分析总结了高炉应用铜冷却壁后,在炉役前期由于铜冷却壁本身优良的挂渣能力,在高炉原燃料冶金性能变差、入炉粉率增加,高炉操作等因素作用下,造成高炉炉墙形成以铜冷却壁所挂渣皮为基础从下至上的结厚,高炉操作炉型受破坏;同时也分析总结了高炉炉役后期,因铜冷却壁因自身物理化学性质和高炉操作,导致铜冷却壁破损失效的因素。为了保证使用铜冷却壁高炉在炉役前期冶炼的正常运行,一是在判定和处理铜冷却壁结厚方面,唐钢2#高炉在学习借鉴国内高炉处理结厚经验的基础上,通过研究实践总结了一套技术。在判定炉墙结厚的35天内,高炉进行短时间休风45小时,在休风前分组集中插焦,加硅石,先烧掉铜冷却壁所挂渣皮,休风后对结厚方向的冷却壁冷却水改汽化,送风后送水,适当开放边缘气流,形成对结厚体的急冷急热冲击,有利于结厚体的脱落,以达到处理结厚的目的。二是在预防铜冷却壁结厚方面,唐钢2号高炉提出了全流程预防高炉结厚的理念。为了保证使用铜冷却壁高炉在炉役后期的安全运行,唐钢2000m3级高炉总结了铜冷却壁的破损原因、破损铜冷却壁漏水判定。在判定铜冷却壁破损漏水后,利用休风机会,加装铜冷却柱、勾管、冷却水管改工业水开路冷却等措施,来维持高炉的安全运行,从而达到延长一代炉龄,为高炉大修准备争取时间,减小高炉经济损失。图25幅;表21个;参56篇。
秦偲杰[9](2019)在《国内某1800m3高炉炉缸侵蚀行为与机理研究》文中指出随着高炉大型化的不断发展,高炉长寿技术的研究迫在眉睫,而高炉炉缸砖衬的侵蚀速率作为高炉寿命的限制性环节,受到了研究人员的密切关注。该高炉一代炉龄只维持了7年3个月,属于国内炉龄较短的高炉之一,通过对该高炉进行炉缸破损调查,研究炉缸的侵蚀行为与机理。本文对该高炉的炉役概况进行介绍及评价,从炉缸结构、耐火材料、冷却系统以及热风炉系统等多个方面,评价了该高炉设计的合理性,并简要说明了高炉炉役期的生产情况。其次,总结了高炉炉缸炉底的侵蚀炉型及侵蚀规律,并对炉缸内的侵蚀形貌、特征等进行分析;根据炉缸内环热电偶温度的最高点及其所对应冷端温度值,得到炉缸碳砖残余厚度的理论计算值,这对于分析碳砖的实际侵蚀状况具有一定的参考价值;并且,归纳了炉役末期炉缸侵蚀严重处即标高7.851m、8.653m与9.455m处热电偶的温度走势,结合当期铁水中Mn、Ti等元素对应含量变化,对炉缸各部位砖衬的实际侵蚀情况进行了综合的分析。基于所取炉缸炉底部位受到侵蚀的残余砖衬样品,选取具有代表性的碳砖、陶瓷垫与粘结层部位,对其进行元素、形貌、能谱和物相等分析:掌握炉缸内各位置碳砖的侵蚀特点,通过计算明确了Zn在炉缸内参与反应并破坏碳砖的机理,并分析了陶瓷垫的侵蚀特点及其保存相对较好的原因,同时对粘结层及其表面有害元素的赋存形态、富集程度等方面进行分析,探索其炉缸粘结层的保护作用机制。最后,对炉缸区的有害元素含量分布与焦炭质量这两个重要指标进行研究:(1)从炉缸纵向和横向两个方面对有害元素的空间分布特点进行分析,了解其在炉缸内的分布规律及对炉缸侵蚀的影响;(2)通过工业分析、形貌、能谱等综合分析手段,掌握焦炭达到炉缸区的质量,研究焦炭在炉缸内的劣化行为。
梁为秋[10](2019)在《死料柱对铁水流动状况影响的数值模拟》文中研究表明高炉炉缸侵蚀与炉缸内铁水流动状态密切相关,铁水的流动冲刷是造成炉缸侧壁剪切应力增大、引起炉缸侧壁温度升高、影响高炉寿命的重要原因之一。高炉炉缸铁水流动行为很大程度上取决于死料柱状态及出铁操作,为延长高炉炉缸寿命,课题以流体力学相关理论为基础,通过FLUENT软件模拟计算,死料柱不同浮起高度、不同孔隙度和出铁口不同流量条件下的炉缸内铁水流动规律和炉底、炉缸侧壁剪切应力分布规律,现结论如下:1)铁水从入口平面到出铁口之间的流动并不是沿着距离最短的直线路径运动的,而是具有一定的路径向出铁口运动。2)死料柱沉座炉底是产生铁水环流的主要原因。死料柱浮起高度增加,可以有效降低铁水环流,同时使炉底铁水流动分布更加均匀。3)死料柱浮起高度在一定范围内增高时,炉底中心剪切应力相应增大,但当死料柱浮起高度超过一定范围后再增高,炉底中心剪切应力则呈现变小的趋势。炉底边缘剪切应力随着死料柱浮起高度增加而一直变小。4)死料柱孔隙度变大,会降低死料柱内铁水流量,无焦空间和缝隙铁水流量变大。死料柱孔隙度变化,对出铁口对面的炉缸侧壁整体受到冲刷侵蚀的影响十分有限,对出铁口一侧炉缸侧壁的铁水冲刷侵蚀无影响。5)出铁口流量变大,对炉缸铁水流动状态影响不大,但缝隙和无焦空间铁水流速增加,炉底和炉缸侧壁剪切应力逐渐变大,受到的冲刷侵蚀加剧。图57幅;表6个;参52篇。
二、武钢4号高炉专家系统的应用(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、武钢4号高炉专家系统的应用(论文提纲范文)
(1)武钢有限7号高炉炉况诊断系统的开发和应用(论文提纲范文)
0 引言 |
1 高炉炉况诊断系统的开发 |
1.1 雷达监测的料面形状和炉身上部料层结构模型 |
1.2 高炉铜冷却壁渣皮厚度监测系统 |
1.3 高炉过程参数计算和炉况状态的模式识别 |
2 系统的应用效果和展望 |
3 结论 |
(2)高炉炉衬与冷却壁损毁机理及长寿化研究(论文提纲范文)
摘要 |
Abstract |
引言 |
第1章 文献综述 |
1.1 现代高炉长寿概况 |
1.2 高炉长寿设计研究进展 |
1.2.1 炉缸结构 |
1.2.2 炉底死铁层 |
1.3 高炉炉衬与冷却壁选材研究进展 |
1.3.1 耐火材料 |
1.3.2 冷却壁 |
1.4 高炉损毁机理研究进展 |
1.4.1 炉缸炉底损毁机理 |
1.4.2 炉体冷却壁损毁机理 |
1.5 高炉传热机理研究进展 |
1.5.1 高炉炉缸炉底传热 |
1.5.2 高炉炉体冷却壁传热 |
1.6 本论文的提出和研究内容 |
1.6.1 论文提出 |
1.6.2 研究内容 |
第2章 高炉损毁机理研究方法 |
2.1 高炉破损调查 |
2.1.1 破损调查内容 |
2.1.2 破损调查方法 |
2.2 实验研究方法 |
2.2.1 炭砖表征 |
2.2.2 冷却壁表征 |
2.2.3 渣皮表征 |
2.3 高炉炉衬与冷却壁传热性能研究 |
2.3.1 传热模型建立 |
2.3.2 模型验证 |
第3章 武钢高炉炉缸炉底损毁机理研究 |
3.1 高炉炉缸炉底损毁特征分析 |
3.1.1 武钢4 号高炉破损调查(第3 代) |
3.1.2 武钢5 号高炉破损调查(第1 代) |
3.2 炉缸炉底损毁机理研究 |
3.2.1 炉缸环缝侵蚀 |
3.2.2 炉缸炉底象脚区域损毁 |
3.3 高炉钛矿护炉研究 |
3.3.1 Ti(C,N)形成热力学分析 |
3.3.2 破损调查取样与表征 |
3.3.3 武钢高炉钛矿护炉效果分析 |
3.4 本章小结 |
第4章 武钢高炉冷却壁损毁机理研究 |
4.1 高炉冷却壁损毁特征分析 |
4.1.1 武钢5 号高炉破损调查(第1 代) |
4.1.2 武钢1 号高炉破损调查(第3 代) |
4.1.3 武钢7 号高炉破损调查(第1 代) |
4.1.4 武钢6 号高炉破损调查(第1 代) |
4.2 球墨铸铁冷却壁损毁机理研究 |
4.2.1 力学性能分析 |
4.2.2 显微结构分析 |
4.2.3 损毁机理分析 |
4.3 铜冷却壁损毁机理研究 |
4.3.1 力学性能分析 |
4.3.2 理化指标分析 |
4.3.3 显微结构分析 |
4.3.4 损毁机理分析 |
4.4 本章小结 |
第5章 武钢高炉炉缸内衬设计优化研究 |
5.1 高炉炉缸全生命周期温度场分析 |
5.1.1 烘炉阶段炉缸温度场 |
5.1.2 炉役初期炉缸温度场 |
5.1.3 炉役全周期炉缸温度场 |
5.1.4 炉役自保护期炉衬厚度 |
5.2 炉缸传热体系结构优化研究 |
5.2.1 炉缸炭砖传热体系优化 |
5.2.2 炉缸冷却结构优化 |
5.3 高炉炉缸长寿化设计与操作 |
5.3.1 炉缸结构设计和选型 |
5.3.2 高炉炉缸长寿操作技术 |
5.4 本章小结 |
第6章 武钢高炉冷却壁长寿优化研究 |
6.1 高炉冷却壁渣皮特性及行为研究 |
6.1.1 渣皮物相组成及微观结构研究 |
6.1.2 渣皮流动性分析 |
6.1.3 渣皮导热性能及挂渣能力分析 |
6.2 高炉冷却壁渣皮行为监测研究 |
6.2.1 渣皮厚度及热流强度计算 |
6.2.2 铜冷却壁渣皮监测系统研究 |
6.3 高炉冷却壁长寿技术对策研究 |
6.3.1 高炉冷却壁长寿设计优化 |
6.3.2 高炉冷却壁操作优化 |
6.3.3 高炉冷却壁渣皮厚度管控技术 |
6.4 本章小结 |
第7章 结论与展望 |
7.1 结论 |
7.2 展望 |
本论文主要创新点 |
致谢 |
参考文献 |
附录1 攻读博士学位期间取得的科研成果 |
附录2 攻读博士学位期间参加的科研项目 |
(3)苏联专家援建包头钢铁公司考略(论文提纲范文)
1 在包钢工作过的苏联专家 |
2 苏联专家的具体工作 |
2.1 技术援助 |
2.1.1 选择厂址和编制包钢设计任务书 |
2.1.2 厂区测量、黄河勘测以及扬水试验 |
2.1.3 矿石试验 |
2.1.4 建设施工附属企业基地的选择和制定设计任务书 |
2.1.5 包钢初步设计审查工作 |
2.1.6 施工准备和生产基地的建设 |
2.1.7 基建与生产同时并进 |
2.2 其他工作 |
2.2.1 语言学习 |
2.2.2 装备引进 |
2.2.3 人才培养 |
3 包钢与苏联专家的合作分析 |
4 结语 |
(4)太钢高碱度碱性球团矿制备及应用技术基础研究(论文提纲范文)
致谢 |
摘要 |
Abstract |
1 引言 |
2 文献综述 |
2.1 球团矿生产工艺的现状及发展趋势 |
2.1.1 球团矿的特点 |
2.1.2 国外球团矿生产工艺的发展现状 |
2.1.3 国内球团矿生产工艺的发展现状 |
2.1.4 铁矿球团工艺未来的发展趋势 |
2.2 球团矿的生产工艺及特点 |
2.2.1 球团矿竖炉生产工艺 |
2.2.2 球团矿链篦机-回转窑生产工艺 |
2.2.3 球团矿带式焙烧机生产工艺 |
2.3 球团矿的种类及特点 |
2.3.1 酸性球团矿 |
2.3.2 碱性球团矿 |
2.4 球团矿还原过程膨胀现象的研究现状 |
2.4.1 球团矿还原过程膨胀机理 |
2.4.2 碱金属、氟对球团还原膨胀性的影响 |
2.4.3 脉石组分对球团还原膨胀性的影响 |
2.4.4 含镁添加剂对球团还原膨胀性的影响 |
2.4.5 焙烧温度对球团矿还原膨胀率的影响 |
2.4.6 还原气氛对球团还原膨胀的影响 |
2.4.7 内配碳对双层球团还原膨胀率的影响 |
2.5 国内外高炉炉炉料结构中球团矿使用情况 |
2.6 课题研究意义及主要研究内容 |
3 碱性球团制备原料基础性能研究 |
3.1 铁精矿基础性能研究 |
3.2 膨润土基础性能研究 |
3.3 石灰石粉基础性能研究 |
3.4 小结 |
4 碱性球团焙烧固结机理及还原膨胀行为研究 |
4.1 球团矿焙烧过程热力学模型建立 |
4.2 不同碱度球团矿的模型计算结果及固结机理分析 |
4.3 模型计算结果的可靠性验证 |
4.3.1 不同碱度球团矿试验的制备研究 |
4.3.2 不同碱度球团矿XRD衍射法分析 |
4.3.3 不同碱度球团矿显微结构分析 |
4.3.4 不同碱度球团矿微观结构图像分析 |
4.4 不同碱度球团矿的还原过程体积膨胀机理研究 |
4.4.1 不同碱度球团还原过程的体积膨胀性能实验结果 |
4.4.2 不同碱度球团矿还原后的物相组成分析 |
4.4.3 不同碱度球团矿还原后的显微结构分析 |
4.4.4 不同碱度球团矿还原膨胀机理分析 |
4.5 小结 |
5 链篦机-回转窑法碱性球团制备技术研究 |
5.1 碱性球团矿生球制备试验 |
5.2 碱性球团生球干燥特性研究 |
5.2.1 不同碱度下的生球爆裂温度 |
5.2.2 不同碱度下的生球干燥速率 |
5.3 碱性球团预热焙烧制度研究 |
5.3.1 预热制度 |
5.3.2 焙烧制度 |
5.4 链箅机-回转窑工艺生产碱性球团矿合理工艺参数研究 |
5.4.1 碱性球团矿合理链篦机干燥预热工艺参数研究 |
5.4.2 碱性球团矿合理回转窑焙烧工艺参数研究 |
5.4.3 不同碱度球团矿对比试验研究 |
5.5 小结 |
6 太钢碱性球团矿工业生产试验研究 |
6.1 第一次链篦机—回转窑工艺生产碱性球团矿工业试验研究 |
6.1.1 工业试验条件 |
6.1.2 工业试验过程 |
6.1.3 工业试验结果及讨论 |
6.2 球团强度对还原膨胀的影响 |
6.2.1 不同抗压强度碱性球团矿的外观 |
6.2.2 不同抗压强度碱性球团矿的显微结构分析 |
6.2.3 不同抗压强度球团还原膨胀机理分析 |
6.3 球团粒度对还原膨胀的影响 |
6.3.1 不同粒度碱性球团矿的外观 |
6.3.2 不同粒度碱性球团矿的显微结构分析 |
6.3.3 不同粒度碱性球团矿还原膨胀机理分析 |
6.4 第二次链篦机—回转窑工艺生产碱性球团矿工业试验研究 |
6.4.1 控制碱性球团矿还原膨胀率的措施 |
6.4.2 工业试验条件 |
6.4.3 工业试验结果及讨论 |
6.5 小结 |
7 碱性球团矿在太钢特大型高炉炉料结构中的应用研究 |
7.1 碱性球团矿对高炉块状带间接还原过程的影响研究 |
7.1.1 高炉块状带气固相还原反应热力学模型建立 |
7.1.2 模型可靠性评价及计算结果讨论分析 |
7.2 碱性球团矿对高炉炉料熔滴性能的影响研究 |
7.2.1 炉料熔滴性能实验方案及原料条件 |
7.2.2 炉料熔滴性能实验结果及讨论 |
7.2.3 基于炉料熔滴试样的渣铁分离行为研究 |
7.3 碱性球团矿对高炉炉缸渣铁反应过程的影响研究 |
7.3.1 基于离子-分子共存理论的硅分配比预报模型建立 |
7.3.2 硅分配比预报模型可靠性评价 |
7.3.3 硅分配比预报模型计算结果与讨论 |
7.4 小结 |
8 结论 |
参考文献 |
附录A 高炉块状带气固相还原反应热力学模型计算原始数据 |
附录B 硅分配比预报模型可靠性验证计算原始数据 |
作者简历及在学研究成果 |
学位论文数据集 |
(5)存量时代下工业遗存更新策略研究 ——以北京首钢园区为例(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究的缘起 |
1.2 研究背景 |
1.2.1 我国城市化发展 |
1.2.2 我国城市更新发展 |
1.2.3 工业遗存更新的必要性 |
1.3 研究概念界定 |
1.3.1 城市更新 |
1.3.2 工业遗存 |
1.3.3 工业遗存更新 |
1.4 研究范围、目的和意义 |
1.4.1 研究范围界定 |
1.4.2 研究目的 |
1.4.3 研究意义 |
1.5 研究方法以及研究框架 |
1.5.1 研究方法 |
1.5.2 研究框架 |
1.6 研究的未尽事宜 |
1.6.1 研究对象的时空局限性 |
1.6.2 更新实践案例的局限性 |
1.6.3 研究方法手段的局限性 |
第2章 国内外工业遗存更新研究 |
2.1 工业革命推动的城市化进程与更新 |
2.2 国外工业遗存更新研究发展与实践 |
2.2.1 国外工业遗存更新研究综述 |
2.2.2 国外工业遗存相关法规政策 |
2.2.3 国外工业遗存更新发展脉络 |
2.2.4 国外工业遗存更新实践 |
2.2.4.1 静态保护和博物馆式更新 |
2.2.4.2 适应更新与有机更新 |
2.2.4.3 城市复兴 |
2.3 国内工业遗存更新研究发展与实践 |
2.3.1 国内工业遗存更新研究综述 |
2.3.2 国内工业遗存更新发展脉络 |
2.3.2.1 中国工业遗存更新的探索阶段(1995-2005) |
2.3.2.2 中国工业遗存更新的发展阶段(2006-2015) |
2.3.2.3 中国工业遗存更新的繁荣阶段(2016年至今) |
2.3.3 国内工业遗存更新实践 |
2.3.3.1 静态保护和博物馆式更新 |
2.3.3.2 适应更新与有机更新并存 |
2.3.3.3 从有机更新迈向城市复兴 |
2.4 小结 |
第3章 工业遗存更新策略研究 |
3.1 工业遗存价值评估与信息采集 |
3.1.1 工业遗存价值评估 |
3.1.2 工业遗存信息采集 |
3.1.2.1 特征数据采集 |
3.1.2.2 详尽掌握资料 |
3.1.2.3 充分踏勘基地 |
3.1.2.4 精细测绘现状 |
3.1.2.5 准确鉴定结构 |
3.2 工业遗存更新的引擎 |
3.2.1 工业遗存的空间生产模式转型 |
3.2.2 工业遗存更新的差异化引擎 |
3.2.2.1 以大事件为导向的工业遗存更新 |
3.2.2.2 以文化为导向的工业遗存更新 |
3.2.2.3 以邻里为导向的工业遗存 |
3.3 工业遗存更新的空间再生 |
3.3.1 城市尺度下的空间再生 |
3.3.1.1 都市针灸,点状更新 |
3.3.1.2 都市链接,线状更新 |
3.3.1.3 都市织补,面状更新 |
3.3.2 单体尺度下的空间再生 |
3.3.2.1 缝合与叠置 |
3.3.2.2 内置与包络 |
3.3.2.3 并置与对偶 |
3.3.2.4 嵌固与植入 |
3.3.2.5 封存与再现 |
3.4 工业遗存更新的空间公共性再造 |
3.4.1 工业遗存更新与城市空间转型的关系 |
3.4.2 工业遗存更新的区域空间开放化 |
3.4.3 工业遗存更新的城市结构邻里化 |
3.4.4 工业遗存更新的公共空间公平化 |
3.4.5 工业遗存更新的城市记忆空间化 |
3.5 工业遗存更新的产业活化 |
3.5.1 产业活化的“工业+”模式 |
3.5.1.1 产业升级还是植入 |
3.5.1.2 智力储备和政策支持 |
3.5.1.3 产业孵化的平台建设 |
3.5.2 产业活化的“文化+”模式 |
3.5.2.1 以传统历史文化为锚点的产业活化模式 |
3.5.2.2 以符号文化嫁接为手段的产业复制模式 |
3.5.3 产业活化的“产业+”模式 |
3.5.3.1 原发性升级的传统产业模式 |
3.5.3.2 渐进迭代的传统产业模式 |
3.5.3.3 颠覆传统地缘经济的新产业模式 |
3.6 工业遗存更新的社会融合 |
3.6.1 传统工业化进程中的产居共同体 |
3.6.2 工业遗存更新的再城市化进程 |
3.6.3 工业遗存更新的空间正义修复 |
3.7 工业遗存更新的可持续发展 |
3.7.1 工业遗存更新的生态可持续 |
3.7.2 工业遗存更新的空间可持续 |
3.7.2.1 保持空间风貌 |
3.7.2.2 优化基础设施 |
3.7.2.3 制定适宜目标 |
3.7.3 工业遗存更新的经济可持续 |
3.8 工业遗存更新的法律制度环境 |
3.8.1 工业遗存更新中的法律制度环境构建 |
3.8.2 工业遗存更新制度的指向性实践推动 |
3.8.3 工业遗存更新中的相关制度环境创新 |
3.9 小结 |
第4章 以北京首钢园区更新为典型代表的策略实证 |
4.1 首钢工业遗存价值评估与信息采集 |
4.1.1 首钢工业遗存价值评估 |
4.1.1.1 历史价值(历史代表性、历史重要性) |
4.1.1.2 社会价值(城市综合贡献、文化情感认同) |
4.1.1.3 工艺价值(技术先进性、工艺完整性) |
4.1.1.4 艺术价值(厂区保存状况、建构筑物特征) |
4.1.1.5 实用价值(空间保持状态、再利用可行性) |
4.1.1.6 溢出价值(景观交通条件、级差地价状态) |
4.1.2 首钢工业遗存信息采集 |
4.1.2.1 特征信息采集 |
4.1.2.2 详尽掌握资料 |
4.1.2.3 充分踏勘基地 |
4.1.2.4 精细测绘现状 |
4.1.2.5 准确鉴定结构 |
4.2 首钢园区的更新引擎 |
4.2.1 首钢园区的空间生产模式 |
4.2.1.1 北京城市化及差异化城市过程 |
4.2.1.2 首钢园区空间生产模式变迁 |
4.2.2 首钢园区更新引擎的选择 |
4.2.2.1 以大事件为导向的首钢园区更新引擎 |
4.2.2.2 以文化为导向的首钢园区更新引擎 |
4.2.2.3 以邻里为导向的首钢园区更新引擎 |
4.3 首钢园区空间再生策略 |
4.3.1 城市尺度下的园区空间再生 |
4.3.1.1 都市针灸,局部点状更新 |
4.3.1.2 都市链接,区域跳跃式更新 |
4.3.1.3 都市织补,面状区域更新 |
4.3.2 单体尺度下的建筑空间再生 |
4.3.2.1 缝合与叠置(水平织补和垂直织补) |
4.3.2.2 内嵌与包络(结构加固和风貌保持) |
4.3.2.3 并置与对偶(新旧并置和新旧对比) |
4.3.2.4 嵌固与植入(局部加建和地下更新) |
4.3.2.5 封存与再现(面层涂装和旧材保持) |
4.3.2.6 利用与统筹(遗存利用和设备综合) |
4.4 首钢园区的公共性再造 |
4.4.1 首钢园区更新与城市空间转型关系 |
4.4.2 首钢园区更新的区域空间开放化 |
4.4.3 首钢园区更新的空间结构邻里化 |
4.4.4 首钢园区更新的公共空间公平化 |
4.4.5 首钢园区更新的城市记忆空间化 |
4.5 首钢园区更新产业活化 |
4.5.1 城市能级与产业活化的关系 |
4.5.2 首钢业态再生的“工业+”模式 |
4.5.2.1 首钢产业活化的城市背景 |
4.5.2.2 首钢的“钢铁”产业升级 |
4.5.2.3 首钢的“非钢”产业升级 |
4.5.3 首钢业态再生的“文化+”模式 |
4.5.3.1 以传统文化为锚固点的产业活化模式 |
4.5.3.2 以符号文化嫁接为手段的产业复制模式 |
4.5.4 首钢业态再生的“产业+”模式 |
4.5.4.1 原发性植入的传统产业模式 |
4.5.4.2 颠覆传统地缘经济的新产业模式 |
4.6 首钢园区更新的社会融合 |
4.6.1 首钢园区的“产居共同体”瓦解 |
4.6.2 首钢园区的“再城市化”进程 |
4.6.3 首钢园区的“空间正义”修复 |
4.7 首钢园区工业遗存更新的可持续性 |
4.7.1 首钢遗存更新中的生态可持续 |
4.7.1.1 首钢园区生态策略 |
4.7.1.2 首钢园区生态系统 |
4.7.1.3 首钢园区污染治理 |
4.7.1.4 首钢能源综合利用 |
4.7.2 首钢遗存更新中的空间可持续 |
4.7.2.1 保持园区工业特色风貌 |
4.7.2.2 保持园区景观开放特征 |
4.7.2.3 优化交通基础设施系统 |
4.7.3 首钢遗存更新中的经济可持续 |
4.8 首钢园区更新的规划与政策环境 |
4.8.1 首钢转型更新的多维度诉求 |
4.8.2 首钢转型更新的重要政策依据 |
4.8.3 首钢转型更新的制度环境创新 |
4.8.4 首钢转型更新的规划实现路线 |
4.9 小结 |
第5章 建构中国工业遗存更新技术路线 |
5.1 工业遗存更新的土地获取 |
5.1.1 政府主导推进一级开发 |
5.1.2 政企合作推进一二联动 |
5.1.3 企业自主区域统筹升级 |
5.1.4 不同模式存在的问题 |
5.2 工业遗存更新的政策支持 |
5.2.1 契合国家政策导向 |
5.2.2 契合地方政策导向 |
5.2.3 契合城市公共诉求 |
5.3 工业遗存更新的价值评定 |
5.3.1 上位风貌保护规划 |
5.3.2 相关专家论证评定 |
5.3.3 企业自荐遗存名录 |
5.4 工业遗存更新的经济评估 |
5.4.1 改变土地性质的自持土地经济评估 |
5.4.2 不改变土地性质的自持土地经济评估 |
5.4.3 不改变土地性质的出租土地经济评估 |
5.5 工业遗存更新的规划调整 |
5.5.1 明确城市设计优先 |
5.5.2 设定城市更新单元 |
5.5.3 推进综合交通评估 |
5.5.4 确认土地用地性质 |
5.5.5 明确上位规划边界 |
5.5.6 开展更新城市设计 |
5.5.7 落实控制规划调整 |
5.6 工业遗存更新的操作主体 |
5.6.1 主体与过程的关系 |
5.6.2 兼容经营与公众参与 |
5.7 工业遗存更新的设计进程 |
5.7.1 梳理上位条件 |
5.7.2 编制建设方案 |
5.7.3 推进更新产策 |
5.8 工业遗存更新的实施运管 |
5.8.1 操作资金构成 |
5.8.2 运管团队构成 |
5.8.3 工作机制创建 |
5.9 小结 |
第6章 结论与讨论 |
6.1 主要研究结论 |
6.1.1 建立适当的制度与环境平台 |
6.1.1.1 加快建设完善相关法律法规体系 |
6.1.1.2 统筹工业遗存价值评定机构标准 |
6.1.1.3 建立工业遗存弹性再利用评定机制 |
6.1.1.4 逐步转变土地治理模式和政策 |
6.1.1.5 搭建跨部门协同的管控治理平台 |
6.1.1.6 建构适用存量更新的规划审批模式 |
6.1.2 选择适当的工业遗存更新模式 |
6.1.2.1 选择技术经济和艺术适合的更新手段 |
6.1.2.2 鼓励公共空间及场所精神的再造 |
6.1.2.3 建立全面的可持续观 |
6.1.3 选择适当的产业及实施策略 |
6.1.3.1 探索匹配城市能级的更新之路 |
6.1.3.2 寻求恰当的引导产业 |
6.1.3.3 建构再城市化的融合之路 |
6.2 主要创新点 |
6.2.1 梳理并集成基于城市过程的多维度协同的工业遗存更新策略 |
6.2.2 梳理基于中国国情的全流程工业遗存更新的技术路线 |
6.3 需进一步探讨的问题 |
致谢 |
参考文献 |
图表索引 |
作者简介及成果 |
(6)高炉用电煅煤基炭砖中高导热网络的构筑及其性能研究(论文提纲范文)
摘要 |
Abstract |
第1章 文献综述 |
1.1 前言 |
1.2 高炉炉缸炉底的侵蚀机理 |
1.2.1 铁水的渗透、溶蚀和冲刷侵蚀 |
1.2.2 碱金属侵蚀 |
1.2.3 热应力破坏 |
1.2.4 氧化侵蚀 |
1.3 炭砖性能要求及发展趋势 |
1.4 耐火材料的导热性能 |
1.4.1 导热机理 |
1.4.2 耐火材料的理论导热模型 |
1.4.3 提高炭砖导热系数的方法 |
1.5 耐火材料的抗侵蚀性能 |
1.5.1 熔渣侵蚀的机理 |
1.5.2 提高炭砖抗侵蚀的方法 |
1.6 含碳耐火材料中SiC的形成机理 |
1.7 本论文的提出及研究内容 |
第2章 热活化处理电煅煤对炭砖微结构和性能的影响 |
2.1 热氧化处理电煅煤对炭砖微结构和性能的影响 |
2.1.1 实验 |
2.1.2 结果与讨论 |
2.2 微波处理电煅煤对炭砖微结构和性能的影响 |
2.2.1 实验 |
2.2.2 结果与讨论 |
2.3 本章小结 |
第3章 催化裂解结合剂对炭砖微结构和性能的影响 |
3.1 电煅煤骨料表面催化生长CNTs对炭砖微结构和性能的影响 |
3.1.1 实验 |
3.1.2 结果与讨论 |
3.2 炭砖中原位催化生长CNTs对炭砖微结构和性能的影响 |
3.2.1 实验 |
3.2.2 结果与讨论 |
3.3 本章小结 |
第4章 晶态碳源对炭砖微结构和性能的影响 |
4.1 热氧化鳞片石墨对炭砖微结构和性能的影响 |
4.1.1 实验 |
4.1.2 结果与讨论 |
4.2 超细微晶石墨对炭砖微结构和性能的影响 |
4.2.1 实验 |
4.2.2 结果与讨论 |
4.3 沥青粉对炭砖微结构和性能的影响 |
4.3.1 实验 |
4.3.2 结果与讨论 |
4.5 本章小结 |
第5章 物理处理电煅煤骨料对炭砖微结构和性能的影响 |
5.1 骨料浸渍氧化铝浆体对炭砖微结构和性能的影响 |
5.1.1 实验 |
5.1.2 结果与讨论 |
5.2 骨料临界粒度对炭砖微结构和性能的影响 |
5.2.1 实验 |
5.2.2 结果与讨论 |
5.3 本章小结 |
第6章 支持向量机对炭砖导热系数的预报和优化 |
6.1 炭砖工艺参数优化 |
6.1.1 样本集 |
6.1.2 数据可行性分析 |
6.1.3 支持向量机回归建模与预报 |
6.2 实验 |
6.2.1 实验原料 |
6.2.2 实验过程与方案 |
6.2.3 结构与性能表征 |
6.3 结果与讨论 |
6.3.1 物相组成与显微结构 |
6.3.2 物理性能 |
6.4 本章小结 |
第7章 结论与展望 |
7.1 结论 |
7.2 展望 |
本论文的创新点 |
参考文献 |
附录1 攻读博士学位期间取得的科研成果 |
附录2 攻读博士学位期间参加的科研项目 |
致谢 |
(7)包钢4150m3高炉风口曲损的分析研究与治理(论文提纲范文)
摘要 |
Abstract |
1 文献综述 |
1.1 引言 |
1.2 国内外高炉风口的发展情况 |
1.2.1 国内发展情况 |
1.2.2 国外发展状况 |
1.3 影响风口使用寿命的原因 |
1.3.1 风口破损机理 |
1.3.2 客观因素 |
1.3.3 高炉操作 |
1.4 提高风口使用寿命的举措 |
1.4.1 优化风口结构 |
1.4.2 改善冷却水条件 |
1.4.3 提高风口材质和制造质量 |
1.4.4 对风口表面进行强化处理 |
1.4.5 提高操作水平 |
1.4.6 提高喷吹煤粉装置的合理性 |
1.5 选题目的和意义 |
2 包钢两座4150m~3 高炉风口曲损原因分析 |
2.1 基本情况 |
2.1.1 风口结构 |
2.1.2 风口材质 |
2.1.3 曲损情况 |
2.1.4 风口曲损的危害 |
2.1.5 风口曲损的判断方法 |
2.2 风口曲损与异常炉况的关系 |
2.3 风口曲损与装料制度的关系 |
2.3.1 布料矩阵 |
2.3.2 矿焦比(O/C) |
2.4 风口曲损与气流的关系 |
2.4.1 风口曲损与初始气流分布的关系 |
2.4.2 风口曲损与热负荷的关系 |
2.5 风口曲损与碱金属的关系 |
2.5.1 风口曲损与碱负荷的关系 |
2.5.2 风口曲损与锌负荷的关系 |
2.6 风口曲损与出铁及风口尺寸的关系 |
2.6.1 风口曲损与风口尺寸的关系 |
2.6.2 风口曲损与出铁管理的关系 |
2.7 本章小结 |
3 高炉风口曲损的解决措施 |
3.1 优化装料制度,稳定中心气流 |
3.2 维持合理送风制度 |
3.2.1 维持合理的鼓风动能,活跃炉缸 |
3.2.2 送风比的控制 |
3.3 维护合理的操作炉型 |
3.3.1 制定合理的炉体热负荷控制范围 |
3.3.2 热负荷的控制 |
3.4 控制入炉有害元素负荷 |
3.4.1 减少碱金属入炉量 |
3.4.2 降低炉渣碱度 |
3.5 保持炉况稳定顺行 |
3.5.1 炉况顺行的特征 |
3.5.2 保持炉况顺行的重要参数范围 |
3.6 优化风口参数,强化出铁管理 |
3.6.1 优化风口参数 |
3.6.2 加强炉前出铁管理 |
3.7 本章小结 |
结论 |
参考文献 |
在学研究成果 |
致谢 |
(8)唐钢2000m3高炉铜冷却壁应用研究(论文提纲范文)
摘要 |
abstract |
引言 |
第1章 文献综述 |
1.1 研究高炉应用铜冷却壁的背景及意义 |
1.2 高炉冷却设备介绍 |
1.2.1 高炉冷却壁分类 |
1.2.2 铜冷却壁和铸铁冷却壁的对比 |
1.3 国内外高炉铜冷却壁应用情况 |
1.3.1 国外高炉铜冷却壁应用情况 |
1.3.2 国内高炉铜冷却壁应用情况 |
1.4 本章小结 |
1.5 本课题研究目标及研究内容 |
第2章 唐钢2000m~3高炉本体冷却设备概况 |
2.1 冷却系统设计流程及参数 |
2.1.1 冷却系统概况 |
2.1.2 冷却系统技术参数 |
2.2 唐钢2000m~3高炉冷却系统监控和管理制度 |
2.2.1 工艺技术控制标准 |
2.2.2 工艺技术控制措施 |
第3章 唐钢2~#高炉炉役前期铜冷却壁应用研究 |
3.1 铜冷却壁对高炉操作炉型的影响 |
3.1.1 铜冷却壁对高炉操作炉型影响机理 |
3.1.2 铜冷却壁对高炉操作炉型影响的矛盾性 |
3.1.3 唐钢2~#高炉铜冷却壁对高炉操作炉型影响现状 |
3.2 使用铜冷却壁后唐钢高炉炉墙结厚的征兆 |
3.2.1 炉墙温度低 |
3.2.2 料尺有尺差 |
3.2.3 十字测温边缘低 |
3.2.4 炉顶成像边缘出现亮光 |
3.2.5 炉缸工作不均 |
3.3 唐钢2~#高炉炉墙结厚的原因分析 |
3.3.1 高炉大修扩容后炉型不合理 |
3.3.2 原燃料 |
3.3.3 操作因素导致高炉结厚 |
3.4 处理唐钢2~#高炉铜冷却壁结厚方法及实践 |
3.4.1 高炉结厚处理的一般原则 |
3.4.2 唐钢2~#高炉处理结厚实践 |
3.5 预防唐钢2~#铜冷却壁结厚的措施 |
3.5.1 实施全流程原燃料整粒工作 |
3.5.2 高炉制定原燃料管理措施 |
3.5.3 实施烧结系统入机料碱金属和锌元素管控工作 |
3.5.4 稳态烧结工艺技术的实施稳定烧结矿冶金性能 |
3.5.5 高炉操作制度的合理管控 |
3.5.6 建立高炉结厚预警模型 |
3.6 应对铜冷却壁结厚效果 |
3.7 本章小结 |
第4章 唐钢1~#高炉炉役后期铜冷却壁应用研究 |
4.1 概述 |
4.2 铜冷却壁破损原因分析 |
4.2.1 铜冷却壁化学侵蚀 |
4.2.2 铜冷却壁应力的破损作用 |
4.2.3 铜冷却壁磨损 |
4.2.4 操作制度的影响 |
4.3 铜冷却壁在唐钢1~#高炉炉役末期破损征兆及应对措施 |
4.3.1 冷却壁破损征兆 |
4.3.2 冷却壁破损应对措施 |
4.3.3 铜冷却壁破损期高炉操作制度调整和管理措施 |
4.4 实施效果 |
4.5 本章小结 |
结论 |
参考文献 |
致谢 |
导师简介 |
企业导师简介 |
作者简介 |
学位论文数据集 |
(9)国内某1800m3高炉炉缸侵蚀行为与机理研究(论文提纲范文)
摘要 |
abstract |
1 绪论 |
1.1 国内外高炉长寿技术现状 |
1.1.1 国外高炉长寿技术现状 |
1.1.2 国内高炉长寿技术现状 |
1.2 高炉炉缸侵蚀的理论分析 |
1.2.1 有害金属侵蚀 |
1.2.2 炉缸结构设计 |
1.2.3 死铁层深度与铁水冲刷溶蚀 |
1.2.4 炉缸热流强度与冷却强度 |
1.2.5 炉缸环裂 |
1.3 高炉炉缸维护 |
1.3.1 炉缸状态监控 |
1.3.2 护炉措施 |
1.3.3 操作制度 |
1.4 研究背景与研究内容 |
1.4.1 研究背景 |
1.4.2 研究内容 |
2 高炉炉役评价 |
2.1 炉缸炉底结构 |
2.2 炉缸炉底耐火材料参数 |
2.3 炉缸冷却设备及系统 |
2.4 热风炉系统 |
2.5 炉役期生产及检修概况 |
2.6 本章小结 |
3 高炉炉缸的侵蚀行为 |
3.1 炉缸侵蚀炉型与形貌分析 |
3.1.1 炉缸侵蚀炉型 |
3.1.2 炉缸砖衬侵蚀形貌 |
3.1.3 炉底陶瓷垫侵蚀形貌 |
3.2 碳砖残余厚度计算与分析 |
3.2.1 炉缸碳砖侵蚀厚度计算 |
3.2.2 计算结果与分析 |
3.3 炉役末期热电偶温度分析 |
3.3.1 热电偶温度变化趋势 |
3.3.2 铁水物理热、Si含量与Mn含量变化趋势 |
3.4 本章小结 |
4 高炉炉缸砖衬微观侵蚀分析 |
4.1 炉缸砖衬侵蚀特征 |
4.1.1 炉缸碳砖侵蚀特征 |
4.1.2 炉底陶瓷垫侵蚀特征 |
4.2 炉缸砖衬侵蚀微观分析 |
4.2.1 碳砖侵蚀微观分析 |
4.2.2 陶瓷垫侵蚀微观分析 |
4.3 炉缸粘结层微观分析 |
4.3.1 炉缸粘结层形貌 |
4.3.2 炉缸粘结层微观分析 |
4.4 本章小结 |
5 炉缸有害元素分布与焦炭质量分析 |
5.1 有害元素空间分布 |
5.1.1 纵向分布 |
5.1.2 横向分布 |
5.2 焦炭质量分析 |
5.2.1 工业分析 |
5.2.2 焦炭微观形貌分析 |
5.2.3 焦炭灰分成分分析 |
5.3 本章小结 |
6 结论 |
参考文献 |
致谢 |
附录 攻读研究生期间主要发表的论文情况 |
(10)死料柱对铁水流动状况影响的数值模拟(论文提纲范文)
摘要 |
abstract |
引言 |
第1章 文献综述 |
1.1 高炉大型化和长寿化现状 |
1.1.1 高炉大型化现状 |
1.1.2 高炉长寿现状 |
1.2 影响高炉长寿的主要因素及相应措施 |
1.2.1 高炉炉身下部侵蚀分析 |
1.2.2 高炉炉缸和炉底侵蚀分析 |
1.2.3 延长高炉寿命的措施 |
1.3 对高炉死料柱的认识 |
1.3.1 死料柱的形状 |
1.3.2 死料柱的形成及原因 |
1.3.3 死料柱的作用 |
1.3.4 降低死料柱负作用的措施 |
1.4 炉缸死料柱受力分析 |
1.4.1 保证死料柱浮起的最小死铁层深度 |
1.4.2 一般情况下死料柱浮起高度 |
1.5 炉缸铁水流动与侵蚀的研究现状 |
1.6 课题研究背景 |
1.7 课题研究目的 |
1.8 课题研究内容 |
第2章 死料柱对铁水流动状况影响的数值模拟模型建立 |
2.1 主要模拟工具FLUENT简介 |
2.2 数学模型的建立 |
2.2.1 炉缸尺寸及主要参数 |
2.2.2 数学模型假设条件 |
2.2.3 模拟计算的边界条件 |
2.2.4 炉缸内铁水流动模型控制方程 |
2.2.5 模拟方法 |
2.2.6 炉缸铁水流动模型网格划分 |
2.2.7 模型在FLUENT软件中求解过程 |
第3章 模拟结果分析与讨论 |
3.1 死料柱浮起高度对铁水流动过程的影响 |
3.1.1 死料柱浮起高度对炉缸铁水流动状态的影响 |
3.1.2 死料柱浮起高度对炉缸铁水流速的影响 |
3.1.3 死料柱浮起高度对炉底剪切应力的影响 |
3.1.4 死料柱浮起高度对炉缸侧壁剪切应力的影响 |
3.2 死料柱孔隙度对铁水流动过程的影响 |
3.2.1 死料柱孔隙度对炉缸铁水流动状态的影响 |
3.2.2 死料柱孔隙度对炉缸铁水流速的影响 |
3.2.3 死料柱孔隙度对炉底剪切应力的影响 |
3.2.4 死料柱孔隙度对炉缸侧壁剪切应力的影响 |
3.3 出铁口流量对铁水流动过程的影响 |
3.3.1 出铁口流量对炉缸铁水流动状态的影响 |
3.3.2 出铁口流量对炉缸铁水流速的影响 |
3.3.3 出铁口流量对炉底剪切应力的影响 |
3.3.4 出铁口流量对炉缸侧壁剪切应力的影响 |
3.4 小结 |
结论 |
参考文献 |
致谢 |
导师简介 |
作者简介 |
学位论文数据集 |
四、武钢4号高炉专家系统的应用(论文参考文献)
- [1]武钢有限7号高炉炉况诊断系统的开发和应用[J]. 刘栋梁,陈令坤. 冶金自动化, 2021(03)
- [2]高炉炉衬与冷却壁损毁机理及长寿化研究[D]. 卢正东. 武汉科技大学, 2021(01)
- [3]苏联专家援建包头钢铁公司考略[J]. 武月清,仪德刚. 工程研究-跨学科视野中的工程, 2021(01)
- [4]太钢高碱度碱性球团矿制备及应用技术基础研究[D]. 李昊堃. 北京科技大学, 2020(11)
- [5]存量时代下工业遗存更新策略研究 ——以北京首钢园区为例[D]. 薄宏涛. 东南大学, 2019(01)
- [6]高炉用电煅煤基炭砖中高导热网络的构筑及其性能研究[D]. 王同生. 武汉科技大学, 2019(08)
- [7]包钢4150m3高炉风口曲损的分析研究与治理[D]. 刘璐. 内蒙古科技大学, 2019(03)
- [8]唐钢2000m3高炉铜冷却壁应用研究[D]. 何友国. 华北理工大学, 2019(04)
- [9]国内某1800m3高炉炉缸侵蚀行为与机理研究[D]. 秦偲杰. 西安建筑科技大学, 2019(06)
- [10]死料柱对铁水流动状况影响的数值模拟[D]. 梁为秋. 华北理工大学, 2019(01)